You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
critical f(x)= 4/(1+x^2)
critical\:f(x)=\frac{4}{1+x^{2}}
inverse of y=x^2+3
inverse\:y=x^{2}+3
critical f(x)=2-3x+x^3
critical\:f(x)=2-3x+x^{3}
inflection f(x)=-4x^3-12x^2+8
inflection\:f(x)=-4x^{3}-12x^{2}+8
inverse of f(x)=c(n)=50+4n
inverse\:f(x)=c(n)=50+4n
asymptotes of (5x^2+1)/(3x-2)
asymptotes\:\frac{5x^{2}+1}{3x-2}
range of f(x)= x/(x^2+x-6)
range\:f(x)=\frac{x}{x^{2}+x-6}
asymptotes of 4/(x^2-3x)
asymptotes\:\frac{4}{x^{2}-3x}
domain of f(x)=4^{x-5}+2
domain\:f(x)=4^{x-5}+2
domain of f(x)=(sqrt(7+x))/(1-x)
domain\:f(x)=\frac{\sqrt{7+x}}{1-x}
domain of f(x)=(x-5)/(3x^2)
domain\:f(x)=\frac{x-5}{3x^{2}}
domain of 5x-9
domain\:5x-9
asymptotes of (6x)/(x-19)
asymptotes\:\frac{6x}{x-19}
domain of f(x)= 1/(sqrt(x-5))
domain\:f(x)=\frac{1}{\sqrt{x-5}}
critical y=x+1/x
critical\:y=x+\frac{1}{x}
vertices y=x^2-x
vertices\:y=x^{2}-x
inverse of f(x)=19+\sqrt[3]{x}
inverse\:f(x)=19+\sqrt[3]{x}
domain of g(x)=x-2
domain\:g(x)=x-2
slope ofintercept 2x+2y=16
slopeintercept\:2x+2y=16
amplitude of f(x)=4cos(pi(x+1/4))
amplitude\:f(x)=4\cos(π(x+\frac{1}{4}))
slope ofintercept (6-1)4
slopeintercept\:(6-1)4
domain of f(x)=|x|
domain\:f(x)=\left|x\right|
inverse of (-2x-1)/(x+5)
inverse\:\frac{-2x-1}{x+5}
slope of 0.2x+0.3y=0.5
slope\:0.2x+0.3y=0.5
asymptotes of f(x)= x/(x(x+6))
asymptotes\:f(x)=\frac{x}{x(x+6)}
domain of f(x)=x^2-4x+8
domain\:f(x)=x^{2}-4x+8
slope of 3x+5y=15
slope\:3x+5y=15
intercepts of 2/(x+1)
intercepts\:\frac{2}{x+1}
y=10^x
y=10^{x}
symmetry 5x-5y=0
symmetry\:5x-5y=0
parity f(x)=x^5+\sqrt[3]{x}+1
parity\:f(x)=x^{5}+\sqrt[3]{x}+1
inverse of f(x)=-x^5-2
inverse\:f(x)=-x^{5}-2
inverse of f(x)=-2x^3
inverse\:f(x)=-2x^{3}
asymptotes of (x+1)/(x-4)
asymptotes\:\frac{x+1}{x-4}
domain of f(x)= x/(2x^2-50)
domain\:f(x)=\frac{x}{2x^{2}-50}
inverse of f(x)=((7x+18))/2
inverse\:f(x)=\frac{(7x+18)}{2}
inverse of f(x)= 1/x-6
inverse\:f(x)=\frac{1}{x}-6
global x^3-12x+1
global\:x^{3}-12x+1
frequency f(x)= 1/4 cos(2x)+5
frequency\:f(x)=\frac{1}{4}\cos(2x)+5
f(x)=1-x^2
f(x)=1-x^{2}
inverse of f(x)=(x+7)^{1/2}
inverse\:f(x)=(x+7)^{\frac{1}{2}}
intercepts of f(x)=e^x
intercepts\:f(x)=e^{x}
inverse of log_{2}(2x)
inverse\:\log_{2}(2x)
slope ofintercept 17x+y=-9
slopeintercept\:17x+y=-9
intercepts of f(x)=(x+3)(x-1)
intercepts\:f(x)=(x+3)(x-1)
range of-x^2-3
range\:-x^{2}-3
inverse of f(x)=(-3-4r)/(2+3r)
inverse\:f(x)=\frac{-3-4r}{2+3r}
inverse of 2-3e^{x-4}
inverse\:2-3e^{x-4}
intercepts of f(x)=-x+2y=6
intercepts\:f(x)=-x+2y=6
domain of f(x)=3x^2+x-2
domain\:f(x)=3x^{2}+x-2
range of f(x)=(x-7)/(3x-5)
range\:f(x)=\frac{x-7}{3x-5}
monotone f(x)=x^2-4x
monotone\:f(x)=x^{2}-4x
range of x^2-7
range\:x^{2}-7
intercepts of-x^2(x-2)^3(x+4)
intercepts\:-x^{2}(x-2)^{3}(x+4)
y=(x-4)^2
y=(x-4)^{2}
intercepts of f(x)=-x
intercepts\:f(x)=-x
domain of sec(2x-3pi)
domain\:\sec(2x-3π)
range of-5cos(pi/4 x)-1
range\:-5\cos(\frac{π}{4}x)-1
parity f(x)=x^2|x|+9
parity\:f(x)=x^{2}\left|x\right|+9
shift 2sin(pix+5)-4
shift\:2\sin(πx+5)-4
inverse of f(x)=sqrt(x+2)+2
inverse\:f(x)=\sqrt{x+2}+2
inverse of f(x)=2^x=1000
inverse\:f(x)=2^{x}=1000
domain of f(x)=(x+1)/(2x-4)
domain\:f(x)=\frac{x+1}{2x-4}
line (500,1),(700,0)
line\:(500,1),(700,0)
asymptotes of f(x)=(x+1)/((x-3)^2)
asymptotes\:f(x)=\frac{x+1}{(x-3)^{2}}
parity f(x)=(2tan(x))/(3x^2-2)
parity\:f(x)=\frac{2\tan(x)}{3x^{2}-2}
extreme f(x)=x^3+11x-4
extreme\:f(x)=x^{3}+11x-4
domain of f(x)=4x+6
domain\:f(x)=4x+6
asymptotes of f(x)=-4/x
asymptotes\:f(x)=-\frac{4}{x}
parallel 2x+3y=7,(4,3)
parallel\:2x+3y=7,(4,3)
domain of sqrt(x+5)
domain\:\sqrt{x+5}
domain of f(x)=sqrt((-x)/(8-x))
domain\:f(x)=\sqrt{\frac{-x}{8-x}}
inverse of y=(-2)/x
inverse\:y=\frac{-2}{x}
extreme f(x)= x/(x+3)
extreme\:f(x)=\frac{x}{x+3}
inverse of f(x)=(2-10t)^{5/2}
inverse\:f(x)=(2-10t)^{\frac{5}{2}}
inverse of 222
inverse\:222
inverse of f(x)=(x-3)/(x+3)
inverse\:f(x)=\frac{x-3}{x+3}
inverse of f(x)=sqrt(8x+1)
inverse\:f(x)=\sqrt{8x+1}
asymptotes of 1/(x+1)+1/(x-3)
asymptotes\:\frac{1}{x+1}+\frac{1}{x-3}
domain of 1/(2sqrt(x))+1
domain\:\frac{1}{2\sqrt{x}}+1
slope ofintercept 2x+5y=-7
slopeintercept\:2x+5y=-7
inverse of f(x)=e^{x/5}
inverse\:f(x)=e^{\frac{x}{5}}
intercepts of f(x)=(x^2-5)(2x^2-5)
intercepts\:f(x)=(x^{2}-5)(2x^{2}-5)
asymptotes of f(x)=(-3x+10)/(2x)
asymptotes\:f(x)=\frac{-3x+10}{2x}
domain of f(x)=ln(1-x^2)
domain\:f(x)=\ln(1-x^{2})
domain of f(x)=sqrt((x+4)/(x-2))
domain\:f(x)=\sqrt{\frac{x+4}{x-2}}
monotone f(x)=(x+2)/(x^2-4)
monotone\:f(x)=\frac{x+2}{x^{2}-4}
intercepts of 3x^2
intercepts\:3x^{2}
domain of x/(x+8)+(x-8)/x
domain\:\frac{x}{x+8}+\frac{x-8}{x}
domain of sqrt(-x)-5
domain\:\sqrt{-x}-5
slope of y=17
slope\:y=17
parity f(x)=x^4+2x^2
parity\:f(x)=x^{4}+2x^{2}
range of f(x)=x
range\:f(x)=x
slope ofintercept 9
slopeintercept\:9
inverse of sqrt(2+5x)
inverse\:\sqrt{2+5x}
domain of x-6
domain\:x-6
intercepts of f(x)=3x-2
intercepts\:f(x)=3x-2
inverse of f(x)=ln(((x+3))/x)
inverse\:f(x)=\ln(\frac{(x+3)}{x})
inverse of f(x)=x^2+4x+4
inverse\:f(x)=x^{2}+4x+4
domain of f(x)=((2x+3))/(x(x^2+2x-3))
domain\:f(x)=\frac{(2x+3)}{x(x^{2}+2x-3)}
1
..
298
299
300
301
302
..
839