Soluções
Calculadora de integrais (antiderivadas)Calculadora de derivadasCalculadora de álgebraCalculadora de matrizesMais...
Gráficos
Gráfico de linhaGráfico exponencialGráfico QuadráticoGráfico de sinMais...
Calculadoras
Calculadora de IMCCalculadora de juros compostosCalculadora de porcentagemCalculadora de aceleraçãoMais...
Geometria
Calculadora do Teorema de PitágorasCalculadora de área de círculoCalculadora Triângulo IsóscelesCalculadora de TriângulosMais...
Ferramentas
CadernoGruposFolhas de "cola"Fichas de trabalhoPráticaVerificar
pt
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometria >

solvefor x,sin^4(x)=(cos^2(x))/2

  • Pré-álgebra
  • Álgebra
  • Pré-cálculo
  • Cálculo
  • Funções
  • Álgebra Linear
  • Trigonometria
  • Estatística
  • Química
  • Conversões

Solução

resolver para x,sin4(x)=2cos2(x)​

Solução

x=43π​+2πn,x=45π​+2πn,x=4π​+2πn,x=47π​+2πn
+1
Graus
x=135∘+360∘n,x=225∘+360∘n,x=45∘+360∘n,x=315∘+360∘n
Passos da solução
sin4(x)=2cos2(x)​
Subtrair 2cos2(x)​ de ambos os ladossin4(x)−2cos2(x)​=0
Simplificar sin4(x)−2cos2(x)​:22sin4(x)−cos2(x)​
sin4(x)−2cos2(x)​
Converter para fração: sin4(x)=2sin4(x)2​=2sin4(x)⋅2​−2cos2(x)​
Já que os denominadores são iguais, combinar as frações: ca​±cb​=ca±b​=2sin4(x)⋅2−cos2(x)​
22sin4(x)−cos2(x)​=0
g(x)f(x)​=0⇒f(x)=02sin4(x)−cos2(x)=0
Fatorar 2sin4(x)−cos2(x):(2​sin2(x)+cos(x))(2​sin2(x)−cos(x))
2sin4(x)−cos2(x)
Reescrever 2sin4(x)−cos2(x) como (2​sin2(x))2−cos2(x)
2sin4(x)−cos2(x)
Aplicar as propriedades dos radicais: a=(a​)22=(2​)2=(2​)2sin4(x)−cos2(x)
Aplicar as propriedades dos expoentes: abc=(ab)csin4(x)=(sin2(x))2=(2​)2(sin2(x))2−cos2(x)
Aplicar as propriedades dos expoentes: ambm=(ab)m(2​)2(sin2(x))2=(2​sin2(x))2=(2​sin2(x))2−cos2(x)
=(2​sin2(x))2−cos2(x)
Aplicar a regra da diferença de quadrados: x2−y2=(x+y)(x−y)(2​sin2(x))2−cos2(x)=(2​sin2(x)+cos(x))(2​sin2(x)−cos(x))=(2​sin2(x)+cos(x))(2​sin2(x)−cos(x))
(2​sin2(x)+cos(x))(2​sin2(x)−cos(x))=0
Resolver cada parte separadamente2​sin2(x)+cos(x)=0or2​sin2(x)−cos(x)=0
2​sin2(x)+cos(x)=0:x=43π​+2πn,x=45π​+2πn
2​sin2(x)+cos(x)=0
Reeecreva usando identidades trigonométricas
cos(x)+sin2(x)2​
Utilizar a identidade trigonométrica pitagórica: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=cos(x)+(1−cos2(x))2​
cos(x)+(1−cos2(x))2​=0
Usando o método de substituição
cos(x)+(1−cos2(x))2​=0
Sea: cos(x)=uu+(1−u2)2​=0
u+(1−u2)2​=0:u=−22​​,u=2​
u+(1−u2)2​=0
Expandir u+(1−u2)2​:u+2​−2​u2
u+(1−u2)2​
=u+2​(1−u2)
Expandir 2​(1−u2):2​−2​u2
2​(1−u2)
Colocar os parênteses utilizando: a(b−c)=ab−aca=2​,b=1,c=u2=2​⋅1−2​u2
=1⋅2​−2​u2
Multiplicar: 1⋅2​=2​=2​−2​u2
=u+2​−2​u2
u+2​−2​u2=0
Escrever na forma padrão ax2+bx+c=0−2​u2+u+2​=0
Resolver com a fórmula quadrática
−2​u2+u+2​=0
Fórmula geral para equações de segundo grau:
Para a=−2​,b=1,c=2​u1,2​=2(−2​)−1±12−4(−2​)2​​​
u1,2​=2(−2​)−1±12−4(−2​)2​​​
12−4(−2​)2​​=3
12−4(−2​)2​​
Aplicar a regra 1a=112=1=1−42​(−2​)​
Aplicar a regra −(−a)=a=1+42​2​​
42​2​=8
42​2​
Aplicar as propriedades dos radicais: a​a​=a2​2​=2=4⋅2
Multiplicar os números: 4⋅2=8=8
=1+8​
Somar: 1+8=9=9​
Fatorar o número: 9=32=32​
Aplicar as propriedades dos radicais: 32​=3=3
u1,2​=2(−2​)−1±3​
Separe as soluçõesu1​=2(−2​)−1+3​,u2​=2(−2​)−1−3​
u=2(−2​)−1+3​:−22​​
2(−2​)−1+3​
Remover os parênteses: (−a)=−a=−22​−1+3​
Somar/subtrair: −1+3=2=−22​2​
Aplicar as propriedades das frações: −ba​=−ba​=−22​2​
Dividir: 22​=1=−2​1​
Racionalizar −2​1​:−22​​
−2​1​
Multiplicar pelo conjugado 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Aplicar as propriedades dos radicais: a​a​=a2​2​=2=2
=−22​​
=−22​​
u=2(−2​)−1−3​:2​
2(−2​)−1−3​
Remover os parênteses: (−a)=−a=−22​−1−3​
Subtrair: −1−3=−4=−22​−4​
Aplicar as propriedades das frações: −b−a​=ba​=22​4​
Dividir: 24​=2=2​2​
Aplicar as propriedades dos radicais: 2​=221​=221​2​
Aplicar as propriedades dos expoentes: xbxa​=xa−b221​21​=21−21​=21−21​
Subtrair: 1−21​=21​=221​
Aplicar as propriedades dos radicais: 221​=2​=2​
As soluções para a equação de segundo grau são: u=−22​​,u=2​
Substituir na equação u=cos(x)cos(x)=−22​​,cos(x)=2​
cos(x)=−22​​,cos(x)=2​
cos(x)=−22​​:x=43π​+2πn,x=45π​+2πn
cos(x)=−22​​
Soluções gerais para cos(x)=−22​​
cos(x) tabela de periodicidade com ciclo de 2πn:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=43π​+2πn,x=45π​+2πn
x=43π​+2πn,x=45π​+2πn
cos(x)=2​:Sem solução
cos(x)=2​
−1≤cos(x)≤1Semsoluc\c​a~o
Combinar toda as soluçõesx=43π​+2πn,x=45π​+2πn
2​sin2(x)−cos(x)=0:x=4π​+2πn,x=47π​+2πn
2​sin2(x)−cos(x)=0
Reeecreva usando identidades trigonométricas
−cos(x)+sin2(x)2​
Utilizar a identidade trigonométrica pitagórica: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−cos(x)+(1−cos2(x))2​
−cos(x)+(1−cos2(x))2​=0
Usando o método de substituição
−cos(x)+(1−cos2(x))2​=0
Sea: cos(x)=u−u+(1−u2)2​=0
−u+(1−u2)2​=0:u=−2​,u=22​​
−u+(1−u2)2​=0
Expandir −u+(1−u2)2​:−u+2​−2​u2
−u+(1−u2)2​
=−u+2​(1−u2)
Expandir 2​(1−u2):2​−2​u2
2​(1−u2)
Colocar os parênteses utilizando: a(b−c)=ab−aca=2​,b=1,c=u2=2​⋅1−2​u2
=1⋅2​−2​u2
Multiplicar: 1⋅2​=2​=2​−2​u2
=−u+2​−2​u2
−u+2​−2​u2=0
Escrever na forma padrão ax2+bx+c=0−2​u2−u+2​=0
Resolver com a fórmula quadrática
−2​u2−u+2​=0
Fórmula geral para equações de segundo grau:
Para a=−2​,b=−1,c=2​u1,2​=2(−2​)−(−1)±(−1)2−4(−2​)2​​​
u1,2​=2(−2​)−(−1)±(−1)2−4(−2​)2​​​
(−1)2−4(−2​)2​​=3
(−1)2−4(−2​)2​​
Aplicar a regra −(−a)=a=(−1)2+42​2​​
(−1)2=1
(−1)2
Aplicar as propriedades dos expoentes: (−a)n=an,se né par(−1)2=12=12
Aplicar a regra 1a=1=1
42​2​=8
42​2​
Aplicar as propriedades dos radicais: a​a​=a2​2​=2=4⋅2
Multiplicar os números: 4⋅2=8=8
=1+8​
Somar: 1+8=9=9​
Fatorar o número: 9=32=32​
Aplicar as propriedades dos radicais: 32​=3=3
u1,2​=2(−2​)−(−1)±3​
Separe as soluçõesu1​=2(−2​)−(−1)+3​,u2​=2(−2​)−(−1)−3​
u=2(−2​)−(−1)+3​:−2​
2(−2​)−(−1)+3​
Remover os parênteses: (−a)=−a,−(−a)=a=−22​1+3​
Somar: 1+3=4=−22​4​
Aplicar as propriedades das frações: −ba​=−ba​=−22​4​
Dividir: 24​=2=2​2​
Aplicar as propriedades dos radicais: 2​=221​=221​2​
Aplicar as propriedades dos expoentes: xbxa​=xa−b221​21​=21−21​=21−21​
Subtrair: 1−21​=21​=221​
Aplicar as propriedades dos radicais: 221​=2​=−2​
u=2(−2​)−(−1)−3​:22​​
2(−2​)−(−1)−3​
Remover os parênteses: (−a)=−a,−(−a)=a=−22​1−3​
Subtrair: 1−3=−2=−22​−2​
Aplicar as propriedades das frações: −b−a​=ba​=22​2​
Dividir: 22​=1=2​1​
Racionalizar 2​1​:22​​
2​1​
Multiplicar pelo conjugado 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Aplicar as propriedades dos radicais: a​a​=a2​2​=2=2
=22​​
=22​​
As soluções para a equação de segundo grau são: u=−2​,u=22​​
Substituir na equação u=cos(x)cos(x)=−2​,cos(x)=22​​
cos(x)=−2​,cos(x)=22​​
cos(x)=−2​:Sem solução
cos(x)=−2​
−1≤cos(x)≤1Semsoluc\c​a~o
cos(x)=22​​:x=4π​+2πn,x=47π​+2πn
cos(x)=22​​
Soluções gerais para cos(x)=22​​
cos(x) tabela de periodicidade com ciclo de 2πn:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=4π​+2πn,x=47π​+2πn
x=4π​+2πn,x=47π​+2πn
Combinar toda as soluçõesx=4π​+2πn,x=47π​+2πn
Combinar toda as soluçõesx=43π​+2πn,x=45π​+2πn,x=4π​+2πn,x=47π​+2πn

Gráfico

Sorry, your browser does not support this application
Visualizar gráfico interativo 

Exemplos populares

tan^2(x)+5tan(x)-1=0csc(θ)+1=02sin^2(θ)-3sin(θ)+1=0,0<= θ<= 2pi2sec(x)+2tan(x)=22sin^2(θ)+sqrt(3)sin(θ)=0
Ferramentas de estudoSolucionador de matemática de IAFichas de trabalhoPráticaFolhas de "cola"CalculadorasCalculadora gráficaCalculadora de GeometriaVerifique a solução
AplicativosAplicativo Simbolab (Android)Calculadora gráfica (Android)Prática (Android)Aplicativo Simbolab (iOS)Calculadora gráfica (iOS)Prática (iOS)Extensão do ChromeSymbolab Math Solver API
EmpresaSobre SimbolabBlogAjuda
JurídicoPrivacidadeTermosPolítica de CookiesConfigurações de cookiesNão venda ou compartilhe minhas informações pessoaisDireitos autorais, diretrizes da comunidade, DSA e outros recursos legaisCentro Jurídico Learneo
Mídia social
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024