解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

tan(pi/4-x)+cot(pi/4-x)=4

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

tan(4π​−x)+cot(4π​−x)=4

解

x=65π​+πn,x=6π​+πn
+1
度
x=150∘+180∘n,x=30∘+180∘n
解答ステップ
tan(4π​−x)+cot(4π​−x)=4
三角関数の公式を使用して書き換える
tan(4π​−x)+cot(4π​−x)=4
三角関数の公式を使用して書き換える
cot(4π​−x)
基本的な三角関数の公式を使用する: cot(x)=sin(x)cos(x)​=sin(4π​−x)cos(4π​−x)​
角の差の公式を使用する: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(4π​)cos(x)−cos(4π​)sin(x)cos(4π​−x)​
角の差の公式を使用する: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=sin(4π​)cos(x)−cos(4π​)sin(x)cos(4π​)cos(x)+sin(4π​)sin(x)​
簡素化 sin(4π​)cos(x)−cos(4π​)sin(x)cos(4π​)cos(x)+sin(4π​)sin(x)​:cos(x)−sin(x)cos(x)+sin(x)​
sin(4π​)cos(x)−cos(4π​)sin(x)cos(4π​)cos(x)+sin(4π​)sin(x)​
cos(4π​)cos(x)+sin(4π​)sin(x)=22​​cos(x)+22​​sin(x)
cos(4π​)cos(x)+sin(4π​)sin(x)
簡素化 cos(4π​):22​​
cos(4π​)
次の自明恒等式を使用する:cos(4π​)=22​​
cos(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)+sin(4π​)sin(x)
簡素化 sin(4π​):22​​
sin(4π​)
次の自明恒等式を使用する:sin(4π​)=22​​
sin(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)+22​​sin(x)
=sin(4π​)cos(x)−cos(4π​)sin(x)22​​cos(x)+22​​sin(x)​
sin(4π​)cos(x)−cos(4π​)sin(x)=22​​cos(x)−22​​sin(x)
sin(4π​)cos(x)−cos(4π​)sin(x)
簡素化 sin(4π​):22​​
sin(4π​)
次の自明恒等式を使用する:sin(4π​)=22​​
sin(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)−cos(4π​)sin(x)
簡素化 cos(4π​):22​​
cos(4π​)
次の自明恒等式を使用する:cos(4π​)=22​​
cos(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)−22​​sin(x)
=22​​cos(x)−22​​sin(x)22​​cos(x)+22​​sin(x)​
乗じる 22​​cos(x):22​cos(x)​
22​​cos(x)
分数を乗じる: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​−22​​sin(x)22​​cos(x)+22​​sin(x)​
乗じる 22​​sin(x):22​sin(x)​
22​​sin(x)
分数を乗じる: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​22​​cos(x)+22​​sin(x)​
乗じる 22​​cos(x):22​cos(x)​
22​​cos(x)
分数を乗じる: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​−22​sin(x)​22​cos(x)​+22​​sin(x)​
乗じる 22​​sin(x):22​sin(x)​
22​​sin(x)
分数を乗じる: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​22​cos(x)​+22​sin(x)​​
分数を組み合わせる 22​cos(x)​−22​sin(x)​:22​cos(x)−2​sin(x)​
規則を適用 ca​±cb​=ca±b​=22​cos(x)−2​sin(x)​
=22​cos(x)−2​sin(x)​22​cos(x)​+22​sin(x)​​
分数を組み合わせる 22​cos(x)​+22​sin(x)​:22​cos(x)+2​sin(x)​
規則を適用 ca​±cb​=ca±b​=22​cos(x)+2​sin(x)​
=22​cos(x)−2​sin(x)​22​cos(x)+2​sin(x)​​
分数を割る: dc​ba​​=b⋅ca⋅d​=2(2​cos(x)−2​sin(x))(2​cos(x)+2​sin(x))⋅2​
共通因数を約分する:2=2​cos(x)−2​sin(x)2​cos(x)+2​sin(x)​
共通項をくくり出す 2​=2​cos(x)−2​sin(x)2​(cos(x)+sin(x))​
共通項をくくり出す 2​=2​(cos(x)−sin(x))2​(cos(x)+sin(x))​
共通因数を約分する:2​=cos(x)−sin(x)cos(x)+sin(x)​
=cos(x)−sin(x)cos(x)+sin(x)​
基本的な三角関数の公式を使用する: tan(x)=cos(x)sin(x)​=cos(4π​−x)sin(4π​−x)​
角の差の公式を使用する: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=cos(4π​−x)sin(4π​)cos(x)−cos(4π​)sin(x)​
角の差の公式を使用する: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(4π​)cos(x)+sin(4π​)sin(x)sin(4π​)cos(x)−cos(4π​)sin(x)​
簡素化 cos(4π​)cos(x)+sin(4π​)sin(x)sin(4π​)cos(x)−cos(4π​)sin(x)​:cos(x)+sin(x)cos(x)−sin(x)​
cos(4π​)cos(x)+sin(4π​)sin(x)sin(4π​)cos(x)−cos(4π​)sin(x)​
sin(4π​)cos(x)−cos(4π​)sin(x)=22​​cos(x)−22​​sin(x)
sin(4π​)cos(x)−cos(4π​)sin(x)
簡素化 sin(4π​):22​​
sin(4π​)
次の自明恒等式を使用する:sin(4π​)=22​​
sin(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)−cos(4π​)sin(x)
簡素化 cos(4π​):22​​
cos(4π​)
次の自明恒等式を使用する:cos(4π​)=22​​
cos(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)−22​​sin(x)
=cos(4π​)cos(x)+sin(4π​)sin(x)22​​cos(x)−22​​sin(x)​
cos(4π​)cos(x)+sin(4π​)sin(x)=22​​cos(x)+22​​sin(x)
cos(4π​)cos(x)+sin(4π​)sin(x)
簡素化 cos(4π​):22​​
cos(4π​)
次の自明恒等式を使用する:cos(4π​)=22​​
cos(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)+sin(4π​)sin(x)
簡素化 sin(4π​):22​​
sin(4π​)
次の自明恒等式を使用する:sin(4π​)=22​​
sin(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)+22​​sin(x)
=22​​cos(x)+22​​sin(x)22​​cos(x)−22​​sin(x)​
乗じる 22​​cos(x):22​cos(x)​
22​​cos(x)
分数を乗じる: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​+22​​sin(x)22​​cos(x)−22​​sin(x)​
乗じる 22​​sin(x):22​sin(x)​
22​​sin(x)
分数を乗じる: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​+22​sin(x)​22​​cos(x)−22​​sin(x)​
乗じる 22​​cos(x):22​cos(x)​
22​​cos(x)
分数を乗じる: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​+22​sin(x)​22​cos(x)​−22​​sin(x)​
乗じる 22​​sin(x):22​sin(x)​
22​​sin(x)
分数を乗じる: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​+22​sin(x)​22​cos(x)​−22​sin(x)​​
分数を組み合わせる 22​cos(x)​+22​sin(x)​:22​cos(x)+2​sin(x)​
規則を適用 ca​±cb​=ca±b​=22​cos(x)+2​sin(x)​
=22​cos(x)+2​sin(x)​22​cos(x)​−22​sin(x)​​
分数を組み合わせる 22​cos(x)​−22​sin(x)​:22​cos(x)−2​sin(x)​
規則を適用 ca​±cb​=ca±b​=22​cos(x)−2​sin(x)​
=22​cos(x)+2​sin(x)​22​cos(x)−2​sin(x)​​
分数を割る: dc​ba​​=b⋅ca⋅d​=2(2​cos(x)+2​sin(x))(2​cos(x)−2​sin(x))⋅2​
共通因数を約分する:2=2​cos(x)+2​sin(x)2​cos(x)−2​sin(x)​
共通項をくくり出す 2​=2​cos(x)+2​sin(x)2​(cos(x)−sin(x))​
共通項をくくり出す 2​=2​(cos(x)+sin(x))2​(cos(x)−sin(x))​
共通因数を約分する:2​=cos(x)+sin(x)cos(x)−sin(x)​
=cos(x)+sin(x)cos(x)−sin(x)​
cos(x)+sin(x)cos(x)−sin(x)​+cos(x)−sin(x)cos(x)+sin(x)​=4
簡素化 cos(x)+sin(x)cos(x)−sin(x)​+cos(x)−sin(x)cos(x)+sin(x)​:(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​
cos(x)+sin(x)cos(x)−sin(x)​+cos(x)−sin(x)cos(x)+sin(x)​
以下の最小公倍数: cos(x)+sin(x),cos(x)−sin(x):(cos(x)+sin(x))(cos(x)−sin(x))
cos(x)+sin(x),cos(x)−sin(x)
最小公倍数 (LCM)
cos(x)+sin(x) または以下のいずれかに現れる因数で構成された式を計算する: cos(x)−sin(x)=(cos(x)+sin(x))(cos(x)−sin(x))
LCMに基づいて分数を調整する
該当する分母を乗じてLCMに変えるために
必要な量で各分子を乗じる (cos(x)+sin(x))(cos(x)−sin(x))
cos(x)+sin(x)cos(x)−sin(x)​の場合:分母と分子に以下を乗じる: cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin(x)​=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))(cos(x)−sin(x))​=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))2​
cos(x)−sin(x)cos(x)+sin(x)​の場合:分母と分子に以下を乗じる: cos(x)+sin(x)cos(x)−sin(x)cos(x)+sin(x)​=(cos(x)−sin(x))(cos(x)+sin(x))(cos(x)+sin(x))(cos(x)+sin(x))​=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)+sin(x))2​
=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))2​+(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)+sin(x))2​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))2+(cos(x)+sin(x))2​
拡張 (cos(x)−sin(x))2+(cos(x)+sin(x))2:2cos2(x)+2sin2(x)
(cos(x)−sin(x))2+(cos(x)+sin(x))2
(cos(x)−sin(x))2:cos2(x)−2cos(x)sin(x)+sin2(x)
完全平方式を適用する: (a−b)2=a2−2ab+b2a=cos(x),b=sin(x)
=cos2(x)−2cos(x)sin(x)+sin2(x)
=cos2(x)−2cos(x)sin(x)+sin2(x)+(cos(x)+sin(x))2
(cos(x)+sin(x))2:cos2(x)+2cos(x)sin(x)+sin2(x)
完全平方式を適用する: (a+b)2=a2+2ab+b2a=cos(x),b=sin(x)
=cos2(x)+2cos(x)sin(x)+sin2(x)
=cos2(x)−2cos(x)sin(x)+sin2(x)+cos2(x)+2cos(x)sin(x)+sin2(x)
簡素化 cos2(x)−2cos(x)sin(x)+sin2(x)+cos2(x)+2cos(x)sin(x)+sin2(x):2cos2(x)+2sin2(x)
cos2(x)−2cos(x)sin(x)+sin2(x)+cos2(x)+2cos(x)sin(x)+sin2(x)
類似した元を足す:−2cos(x)sin(x)+2cos(x)sin(x)=0=cos2(x)+sin2(x)+cos2(x)+sin2(x)
類似した元を足す:cos2(x)+cos2(x)=2cos2(x)=2cos2(x)+sin2(x)+sin2(x)
類似した元を足す:sin2(x)+sin2(x)=2sin2(x)=2cos2(x)+2sin2(x)
=2cos2(x)+2sin2(x)
=(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​
(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​=4
(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​=4
両辺から4を引く(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​−4=0
簡素化 (cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​−4:(cos(x)+sin(x))(cos(x)−sin(x))−2cos2(x)+6sin2(x)​
(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​−4
元を分数に変換する: 4=(cos(x)+sin(x))(cos(x)−sin(x))4(cos(x)+sin(x))(cos(x)−sin(x))​=(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​−(cos(x)+sin(x))(cos(x)−sin(x))4(cos(x)+sin(x))(cos(x)−sin(x))​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)−4(cos(x)+sin(x))(cos(x)−sin(x))​
拡張 2cos2(x)+2sin2(x)−4(cos(x)+sin(x))(cos(x)−sin(x)):−2cos2(x)+6sin2(x)
2cos2(x)+2sin2(x)−4(cos(x)+sin(x))(cos(x)−sin(x))
拡張 −4(cos(x)+sin(x))(cos(x)−sin(x)):−4cos2(x)+4sin2(x)
拡張 (cos(x)+sin(x))(cos(x)−sin(x)):cos2(x)−sin2(x)
(cos(x)+sin(x))(cos(x)−sin(x))
2乗の差の公式を適用する:(a+b)(a−b)=a2−b2a=cos(x),b=sin(x)=cos2(x)−sin2(x)
=−4(cos2(x)−sin2(x))
拡張 −4(cos2(x)−sin2(x)):−4cos2(x)+4sin2(x)
−4(cos2(x)−sin2(x))
分配法則を適用する: a(b−c)=ab−aca=−4,b=cos2(x),c=sin2(x)=−4cos2(x)−(−4)sin2(x)
マイナス・プラスの規則を適用する−(−a)=a=−4cos2(x)+4sin2(x)
=−4cos2(x)+4sin2(x)
=2cos2(x)+2sin2(x)−4cos2(x)+4sin2(x)
簡素化 2cos2(x)+2sin2(x)−4cos2(x)+4sin2(x):−2cos2(x)+6sin2(x)
2cos2(x)+2sin2(x)−4cos2(x)+4sin2(x)
類似した元を足す:2cos2(x)−4cos2(x)=−2cos2(x)=−2cos2(x)+2sin2(x)+4sin2(x)
類似した元を足す:2sin2(x)+4sin2(x)=6sin2(x)=−2cos2(x)+6sin2(x)
=−2cos2(x)+6sin2(x)
=(cos(x)+sin(x))(cos(x)−sin(x))−2cos2(x)+6sin2(x)​
(cos(x)+sin(x))(cos(x)−sin(x))−2cos2(x)+6sin2(x)​=0
g(x)f(x)​=0⇒f(x)=0−2cos2(x)+6sin2(x)=0
因数 −2cos2(x)+6sin2(x):2(3​sin(x)+cos(x))(3​sin(x)−cos(x))
−2cos2(x)+6sin2(x)
6を書き換え 3⋅2=−2cos2(x)+3⋅2sin2(x)
共通項をくくり出す 2=2(−cos2(x)+3sin2(x))
因数 3sin2(x)−cos2(x):(3​sin(x)+cos(x))(3​sin(x)−cos(x))
3sin2(x)−cos2(x)
3sin2(x)−cos2(x)を書き換え (3​sin(x))2−cos2(x)
3sin2(x)−cos2(x)
累乗根の規則を適用する: a=(a​)23=(3​)2=(3​)2sin2(x)−cos2(x)
指数の規則を適用する: ambm=(ab)m(3​)2sin2(x)=(3​sin(x))2=(3​sin(x))2−cos2(x)
=(3​sin(x))2−cos2(x)
2乗の差の公式を適用する:x2−y2=(x+y)(x−y)(3​sin(x))2−cos2(x)=(3​sin(x)+cos(x))(3​sin(x)−cos(x))=(3​sin(x)+cos(x))(3​sin(x)−cos(x))
=2(3​sin(x)+cos(x))(3​sin(x)−cos(x))
2(3​sin(x)+cos(x))(3​sin(x)−cos(x))=0
各部分を別個に解く3​sin(x)+cos(x)=0or3​sin(x)−cos(x)=0
3​sin(x)+cos(x)=0:x=65π​+πn
3​sin(x)+cos(x)=0
三角関数の公式を使用して書き換える
3​sin(x)+cos(x)=0
cos(x),cos(x)=0で両辺を割るcos(x)3​sin(x)+cos(x)​=cos(x)0​
簡素化cos(x)3​sin(x)​+1=0
基本的な三角関数の公式を使用する: cos(x)sin(x)​=tan(x)3​tan(x)+1=0
3​tan(x)+1=0
1を右側に移動します
3​tan(x)+1=0
両辺から1を引く3​tan(x)+1−1=0−1
簡素化3​tan(x)=−1
3​tan(x)=−1
以下で両辺を割る3​
3​tan(x)=−1
以下で両辺を割る3​3​3​tan(x)​=3​−1​
簡素化
3​3​tan(x)​=3​−1​
簡素化 3​3​tan(x)​:tan(x)
3​3​tan(x)​
共通因数を約分する:3​=tan(x)
簡素化 3​−1​:−33​​
3​−1​
分数の規則を適用する: b−a​=−ba​=−3​1​
有理化する −3​1​:−33​​
−3​1​
共役で乗じる 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
累乗根の規則を適用する: a​a​=a3​3​=3=3
=−33​​
=−33​​
tan(x)=−33​​
tan(x)=−33​​
tan(x)=−33​​
以下の一般解 tan(x)=−33​​
tan(x)πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=65π​+πn
x=65π​+πn
3​sin(x)−cos(x)=0:x=6π​+πn
3​sin(x)−cos(x)=0
三角関数の公式を使用して書き換える
3​sin(x)−cos(x)=0
cos(x),cos(x)=0で両辺を割るcos(x)3​sin(x)−cos(x)​=cos(x)0​
簡素化cos(x)3​sin(x)​−1=0
基本的な三角関数の公式を使用する: cos(x)sin(x)​=tan(x)3​tan(x)−1=0
3​tan(x)−1=0
1を右側に移動します
3​tan(x)−1=0
両辺に1を足す3​tan(x)−1+1=0+1
簡素化3​tan(x)=1
3​tan(x)=1
以下で両辺を割る3​
3​tan(x)=1
以下で両辺を割る3​3​3​tan(x)​=3​1​
簡素化
3​3​tan(x)​=3​1​
簡素化 3​3​tan(x)​:tan(x)
3​3​tan(x)​
共通因数を約分する:3​=tan(x)
簡素化 3​1​:33​​
3​1​
共役で乗じる 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
累乗根の規則を適用する: a​a​=a3​3​=3=3
=33​​
tan(x)=33​​
tan(x)=33​​
tan(x)=33​​
以下の一般解 tan(x)=33​​
tan(x)πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=6π​+πn
x=6π​+πn
すべての解を組み合わせるx=65π​+πn,x=6π​+πn

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

7sin(θ)-1=5sin(θ)7sin(θ)−1=5sin(θ)csc(θ)=-7/3csc(θ)=−37​sin(θ)= 5/8sin(θ)=85​arctan(2x)+arctan(x)= pi/4arctan(2x)+arctan(x)=4π​tan(a)=1tan(a)=1
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024