Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(pi/4-x)+cot(pi/4-x)=4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(4π​−x)+cot(4π​−x)=4

Solution

x=65π​+πn,x=6π​+πn
+1
Degrees
x=150∘+180∘n,x=30∘+180∘n
Solution steps
tan(4π​−x)+cot(4π​−x)=4
Rewrite using trig identities
tan(4π​−x)+cot(4π​−x)=4
Rewrite using trig identities
cot(4π​−x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(4π​−x)cos(4π​−x)​
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(4π​)cos(x)−cos(4π​)sin(x)cos(4π​−x)​
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=sin(4π​)cos(x)−cos(4π​)sin(x)cos(4π​)cos(x)+sin(4π​)sin(x)​
Simplify sin(4π​)cos(x)−cos(4π​)sin(x)cos(4π​)cos(x)+sin(4π​)sin(x)​:cos(x)−sin(x)cos(x)+sin(x)​
sin(4π​)cos(x)−cos(4π​)sin(x)cos(4π​)cos(x)+sin(4π​)sin(x)​
cos(4π​)cos(x)+sin(4π​)sin(x)=22​​cos(x)+22​​sin(x)
cos(4π​)cos(x)+sin(4π​)sin(x)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)+sin(4π​)sin(x)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)+22​​sin(x)
=sin(4π​)cos(x)−cos(4π​)sin(x)22​​cos(x)+22​​sin(x)​
sin(4π​)cos(x)−cos(4π​)sin(x)=22​​cos(x)−22​​sin(x)
sin(4π​)cos(x)−cos(4π​)sin(x)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)−cos(4π​)sin(x)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)−22​​sin(x)
=22​​cos(x)−22​​sin(x)22​​cos(x)+22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​−22​​sin(x)22​​cos(x)+22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​22​​cos(x)+22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​−22​sin(x)​22​cos(x)​+22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​22​cos(x)​+22​sin(x)​​
Combine the fractions 22​cos(x)​−22​sin(x)​:22​cos(x)−2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)−2​sin(x)​
=22​cos(x)−2​sin(x)​22​cos(x)​+22​sin(x)​​
Combine the fractions 22​cos(x)​+22​sin(x)​:22​cos(x)+2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)+2​sin(x)​
=22​cos(x)−2​sin(x)​22​cos(x)+2​sin(x)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(2​cos(x)−2​sin(x))(2​cos(x)+2​sin(x))⋅2​
Cancel the common factor: 2=2​cos(x)−2​sin(x)2​cos(x)+2​sin(x)​
Factor out common term 2​=2​cos(x)−2​sin(x)2​(cos(x)+sin(x))​
Factor out common term 2​=2​(cos(x)−sin(x))2​(cos(x)+sin(x))​
Cancel the common factor: 2​=cos(x)−sin(x)cos(x)+sin(x)​
=cos(x)−sin(x)cos(x)+sin(x)​
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(4π​−x)sin(4π​−x)​
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=cos(4π​−x)sin(4π​)cos(x)−cos(4π​)sin(x)​
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(4π​)cos(x)+sin(4π​)sin(x)sin(4π​)cos(x)−cos(4π​)sin(x)​
Simplify cos(4π​)cos(x)+sin(4π​)sin(x)sin(4π​)cos(x)−cos(4π​)sin(x)​:cos(x)+sin(x)cos(x)−sin(x)​
cos(4π​)cos(x)+sin(4π​)sin(x)sin(4π​)cos(x)−cos(4π​)sin(x)​
sin(4π​)cos(x)−cos(4π​)sin(x)=22​​cos(x)−22​​sin(x)
sin(4π​)cos(x)−cos(4π​)sin(x)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)−cos(4π​)sin(x)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)−22​​sin(x)
=cos(4π​)cos(x)+sin(4π​)sin(x)22​​cos(x)−22​​sin(x)​
cos(4π​)cos(x)+sin(4π​)sin(x)=22​​cos(x)+22​​sin(x)
cos(4π​)cos(x)+sin(4π​)sin(x)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)+sin(4π​)sin(x)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)+22​​sin(x)
=22​​cos(x)+22​​sin(x)22​​cos(x)−22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​+22​​sin(x)22​​cos(x)−22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​+22​sin(x)​22​​cos(x)−22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​+22​sin(x)​22​cos(x)​−22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​+22​sin(x)​22​cos(x)​−22​sin(x)​​
Combine the fractions 22​cos(x)​+22​sin(x)​:22​cos(x)+2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)+2​sin(x)​
=22​cos(x)+2​sin(x)​22​cos(x)​−22​sin(x)​​
Combine the fractions 22​cos(x)​−22​sin(x)​:22​cos(x)−2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)−2​sin(x)​
=22​cos(x)+2​sin(x)​22​cos(x)−2​sin(x)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(2​cos(x)+2​sin(x))(2​cos(x)−2​sin(x))⋅2​
Cancel the common factor: 2=2​cos(x)+2​sin(x)2​cos(x)−2​sin(x)​
Factor out common term 2​=2​cos(x)+2​sin(x)2​(cos(x)−sin(x))​
Factor out common term 2​=2​(cos(x)+sin(x))2​(cos(x)−sin(x))​
Cancel the common factor: 2​=cos(x)+sin(x)cos(x)−sin(x)​
=cos(x)+sin(x)cos(x)−sin(x)​
cos(x)+sin(x)cos(x)−sin(x)​+cos(x)−sin(x)cos(x)+sin(x)​=4
Simplify cos(x)+sin(x)cos(x)−sin(x)​+cos(x)−sin(x)cos(x)+sin(x)​:(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​
cos(x)+sin(x)cos(x)−sin(x)​+cos(x)−sin(x)cos(x)+sin(x)​
Least Common Multiplier of cos(x)+sin(x),cos(x)−sin(x):(cos(x)+sin(x))(cos(x)−sin(x))
cos(x)+sin(x),cos(x)−sin(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x)+sin(x) or cos(x)−sin(x)=(cos(x)+sin(x))(cos(x)−sin(x))
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM (cos(x)+sin(x))(cos(x)−sin(x))
For cos(x)+sin(x)cos(x)−sin(x)​:multiply the denominator and numerator by cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin(x)​=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))(cos(x)−sin(x))​=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))2​
For cos(x)−sin(x)cos(x)+sin(x)​:multiply the denominator and numerator by cos(x)+sin(x)cos(x)−sin(x)cos(x)+sin(x)​=(cos(x)−sin(x))(cos(x)+sin(x))(cos(x)+sin(x))(cos(x)+sin(x))​=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)+sin(x))2​
=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))2​+(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)+sin(x))2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))2+(cos(x)+sin(x))2​
Expand (cos(x)−sin(x))2+(cos(x)+sin(x))2:2cos2(x)+2sin2(x)
(cos(x)−sin(x))2+(cos(x)+sin(x))2
(cos(x)−sin(x))2:cos2(x)−2cos(x)sin(x)+sin2(x)
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=cos(x),b=sin(x)
=cos2(x)−2cos(x)sin(x)+sin2(x)
=cos2(x)−2cos(x)sin(x)+sin2(x)+(cos(x)+sin(x))2
(cos(x)+sin(x))2:cos2(x)+2cos(x)sin(x)+sin2(x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=cos(x),b=sin(x)
=cos2(x)+2cos(x)sin(x)+sin2(x)
=cos2(x)−2cos(x)sin(x)+sin2(x)+cos2(x)+2cos(x)sin(x)+sin2(x)
Simplify cos2(x)−2cos(x)sin(x)+sin2(x)+cos2(x)+2cos(x)sin(x)+sin2(x):2cos2(x)+2sin2(x)
cos2(x)−2cos(x)sin(x)+sin2(x)+cos2(x)+2cos(x)sin(x)+sin2(x)
Add similar elements: −2cos(x)sin(x)+2cos(x)sin(x)=0=cos2(x)+sin2(x)+cos2(x)+sin2(x)
Add similar elements: cos2(x)+cos2(x)=2cos2(x)=2cos2(x)+sin2(x)+sin2(x)
Add similar elements: sin2(x)+sin2(x)=2sin2(x)=2cos2(x)+2sin2(x)
=2cos2(x)+2sin2(x)
=(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​
(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​=4
(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​=4
Subtract 4 from both sides(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​−4=0
Simplify (cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​−4:(cos(x)+sin(x))(cos(x)−sin(x))−2cos2(x)+6sin2(x)​
(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​−4
Convert element to fraction: 4=(cos(x)+sin(x))(cos(x)−sin(x))4(cos(x)+sin(x))(cos(x)−sin(x))​=(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​−(cos(x)+sin(x))(cos(x)−sin(x))4(cos(x)+sin(x))(cos(x)−sin(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)−4(cos(x)+sin(x))(cos(x)−sin(x))​
Expand 2cos2(x)+2sin2(x)−4(cos(x)+sin(x))(cos(x)−sin(x)):−2cos2(x)+6sin2(x)
2cos2(x)+2sin2(x)−4(cos(x)+sin(x))(cos(x)−sin(x))
Expand −4(cos(x)+sin(x))(cos(x)−sin(x)):−4cos2(x)+4sin2(x)
Expand (cos(x)+sin(x))(cos(x)−sin(x)):cos2(x)−sin2(x)
(cos(x)+sin(x))(cos(x)−sin(x))
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=cos(x),b=sin(x)=cos2(x)−sin2(x)
=−4(cos2(x)−sin2(x))
Expand −4(cos2(x)−sin2(x)):−4cos2(x)+4sin2(x)
−4(cos2(x)−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−4,b=cos2(x),c=sin2(x)=−4cos2(x)−(−4)sin2(x)
Apply minus-plus rules−(−a)=a=−4cos2(x)+4sin2(x)
=−4cos2(x)+4sin2(x)
=2cos2(x)+2sin2(x)−4cos2(x)+4sin2(x)
Simplify 2cos2(x)+2sin2(x)−4cos2(x)+4sin2(x):−2cos2(x)+6sin2(x)
2cos2(x)+2sin2(x)−4cos2(x)+4sin2(x)
Add similar elements: 2cos2(x)−4cos2(x)=−2cos2(x)=−2cos2(x)+2sin2(x)+4sin2(x)
Add similar elements: 2sin2(x)+4sin2(x)=6sin2(x)=−2cos2(x)+6sin2(x)
=−2cos2(x)+6sin2(x)
=(cos(x)+sin(x))(cos(x)−sin(x))−2cos2(x)+6sin2(x)​
(cos(x)+sin(x))(cos(x)−sin(x))−2cos2(x)+6sin2(x)​=0
g(x)f(x)​=0⇒f(x)=0−2cos2(x)+6sin2(x)=0
Factor −2cos2(x)+6sin2(x):2(3​sin(x)+cos(x))(3​sin(x)−cos(x))
−2cos2(x)+6sin2(x)
Rewrite 6 as 3⋅2=−2cos2(x)+3⋅2sin2(x)
Factor out common term 2=2(−cos2(x)+3sin2(x))
Factor 3sin2(x)−cos2(x):(3​sin(x)+cos(x))(3​sin(x)−cos(x))
3sin2(x)−cos2(x)
Rewrite 3sin2(x)−cos2(x) as (3​sin(x))2−cos2(x)
3sin2(x)−cos2(x)
Apply radical rule: a=(a​)23=(3​)2=(3​)2sin2(x)−cos2(x)
Apply exponent rule: ambm=(ab)m(3​)2sin2(x)=(3​sin(x))2=(3​sin(x))2−cos2(x)
=(3​sin(x))2−cos2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3​sin(x))2−cos2(x)=(3​sin(x)+cos(x))(3​sin(x)−cos(x))=(3​sin(x)+cos(x))(3​sin(x)−cos(x))
=2(3​sin(x)+cos(x))(3​sin(x)−cos(x))
2(3​sin(x)+cos(x))(3​sin(x)−cos(x))=0
Solving each part separately3​sin(x)+cos(x)=0or3​sin(x)−cos(x)=0
3​sin(x)+cos(x)=0:x=65π​+πn
3​sin(x)+cos(x)=0
Rewrite using trig identities
3​sin(x)+cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)3​sin(x)+cos(x)​=cos(x)0​
Simplifycos(x)3​sin(x)​+1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)3​tan(x)+1=0
3​tan(x)+1=0
Move 1to the right side
3​tan(x)+1=0
Subtract 1 from both sides3​tan(x)+1−1=0−1
Simplify3​tan(x)=−1
3​tan(x)=−1
Divide both sides by 3​
3​tan(x)=−1
Divide both sides by 3​3​3​tan(x)​=3​−1​
Simplify
3​3​tan(x)​=3​−1​
Simplify 3​3​tan(x)​:tan(x)
3​3​tan(x)​
Cancel the common factor: 3​=tan(x)
Simplify 3​−1​:−33​​
3​−1​
Apply the fraction rule: b−a​=−ba​=−3​1​
Rationalize −3​1​:−33​​
−3​1​
Multiply by the conjugate 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​​
=−33​​
tan(x)=−33​​
tan(x)=−33​​
tan(x)=−33​​
General solutions for tan(x)=−33​​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=65π​+πn
x=65π​+πn
3​sin(x)−cos(x)=0:x=6π​+πn
3​sin(x)−cos(x)=0
Rewrite using trig identities
3​sin(x)−cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)3​sin(x)−cos(x)​=cos(x)0​
Simplifycos(x)3​sin(x)​−1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)3​tan(x)−1=0
3​tan(x)−1=0
Move 1to the right side
3​tan(x)−1=0
Add 1 to both sides3​tan(x)−1+1=0+1
Simplify3​tan(x)=1
3​tan(x)=1
Divide both sides by 3​
3​tan(x)=1
Divide both sides by 3​3​3​tan(x)​=3​1​
Simplify
3​3​tan(x)​=3​1​
Simplify 3​3​tan(x)​:tan(x)
3​3​tan(x)​
Cancel the common factor: 3​=tan(x)
Simplify 3​1​:33​​
3​1​
Multiply by the conjugate 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​​
tan(x)=33​​
tan(x)=33​​
tan(x)=33​​
General solutions for tan(x)=33​​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=6π​+πn
x=6π​+πn
Combine all the solutionsx=65π​+πn,x=6π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

7sin(θ)-1=5sin(θ)csc(θ)=-7/3sin(θ)= 5/8arctan(2x)+arctan(x)= pi/4tan(a)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(pi/4-x)+cot(pi/4-x)=4 ?

    The general solution for tan(pi/4-x)+cot(pi/4-x)=4 is x=(5pi)/6+pin,x= pi/6+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024