解
tan(4π−x)+cot(4π−x)=4
解
x=65π+πn,x=6π+πn
+1
度
x=150∘+180∘n,x=30∘+180∘n解答ステップ
tan(4π−x)+cot(4π−x)=4
三角関数の公式を使用して書き換える
tan(4π−x)+cot(4π−x)=4
三角関数の公式を使用して書き換える
cot(4π−x)
基本的な三角関数の公式を使用する: cot(x)=sin(x)cos(x)=sin(4π−x)cos(4π−x)
角の差の公式を使用する: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(4π)cos(x)−cos(4π)sin(x)cos(4π−x)
角の差の公式を使用する: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=sin(4π)cos(x)−cos(4π)sin(x)cos(4π)cos(x)+sin(4π)sin(x)
簡素化 sin(4π)cos(x)−cos(4π)sin(x)cos(4π)cos(x)+sin(4π)sin(x):cos(x)−sin(x)cos(x)+sin(x)
sin(4π)cos(x)−cos(4π)sin(x)cos(4π)cos(x)+sin(4π)sin(x)
cos(4π)cos(x)+sin(4π)sin(x)=22cos(x)+22sin(x)
cos(4π)cos(x)+sin(4π)sin(x)
簡素化 cos(4π):22
cos(4π)
次の自明恒等式を使用する:cos(4π)=22
cos(x)2πn 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=22=22cos(x)+sin(4π)sin(x)
簡素化 sin(4π):22
sin(4π)
次の自明恒等式を使用する:sin(4π)=22
sin(x)2πn 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=22=22cos(x)+22sin(x)
=sin(4π)cos(x)−cos(4π)sin(x)22cos(x)+22sin(x)
sin(4π)cos(x)−cos(4π)sin(x)=22cos(x)−22sin(x)
sin(4π)cos(x)−cos(4π)sin(x)
簡素化 sin(4π):22
sin(4π)
次の自明恒等式を使用する:sin(4π)=22
sin(x)2πn 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=22=22cos(x)−cos(4π)sin(x)
簡素化 cos(4π):22
cos(4π)
次の自明恒等式を使用する:cos(4π)=22
cos(x)2πn 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=22=22cos(x)−22sin(x)
=22cos(x)−22sin(x)22cos(x)+22sin(x)
乗じる 22cos(x):22cos(x)
22cos(x)
分数を乗じる: a⋅cb=ca⋅b=22cos(x)
=22cos(x)−22sin(x)22cos(x)+22sin(x)
乗じる 22sin(x):22sin(x)
22sin(x)
分数を乗じる: a⋅cb=ca⋅b=22sin(x)
=22cos(x)−22sin(x)22cos(x)+22sin(x)
乗じる 22cos(x):22cos(x)
22cos(x)
分数を乗じる: a⋅cb=ca⋅b=22cos(x)
=22cos(x)−22sin(x)22cos(x)+22sin(x)
乗じる 22sin(x):22sin(x)
22sin(x)
分数を乗じる: a⋅cb=ca⋅b=22sin(x)
=22cos(x)−22sin(x)22cos(x)+22sin(x)
分数を組み合わせる 22cos(x)−22sin(x):22cos(x)−2sin(x)
規則を適用 ca±cb=ca±b=22cos(x)−2sin(x)
=22cos(x)−2sin(x)22cos(x)+22sin(x)
分数を組み合わせる 22cos(x)+22sin(x):22cos(x)+2sin(x)
規則を適用 ca±cb=ca±b=22cos(x)+2sin(x)
=22cos(x)−2sin(x)22cos(x)+2sin(x)
分数を割る: dcba=b⋅ca⋅d=2(2cos(x)−2sin(x))(2cos(x)+2sin(x))⋅2
共通因数を約分する:2=2cos(x)−2sin(x)2cos(x)+2sin(x)
共通項をくくり出す 2=2cos(x)−2sin(x)2(cos(x)+sin(x))
共通項をくくり出す 2=2(cos(x)−sin(x))2(cos(x)+sin(x))
共通因数を約分する:2=cos(x)−sin(x)cos(x)+sin(x)
=cos(x)−sin(x)cos(x)+sin(x)
基本的な三角関数の公式を使用する: tan(x)=cos(x)sin(x)=cos(4π−x)sin(4π−x)
角の差の公式を使用する: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=cos(4π−x)sin(4π)cos(x)−cos(4π)sin(x)
角の差の公式を使用する: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(4π)cos(x)+sin(4π)sin(x)sin(4π)cos(x)−cos(4π)sin(x)
簡素化 cos(4π)cos(x)+sin(4π)sin(x)sin(4π)cos(x)−cos(4π)sin(x):cos(x)+sin(x)cos(x)−sin(x)
cos(4π)cos(x)+sin(4π)sin(x)sin(4π)cos(x)−cos(4π)sin(x)
sin(4π)cos(x)−cos(4π)sin(x)=22cos(x)−22sin(x)
sin(4π)cos(x)−cos(4π)sin(x)
簡素化 sin(4π):22
sin(4π)
次の自明恒等式を使用する:sin(4π)=22
sin(x)2πn 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=22=22cos(x)−cos(4π)sin(x)
簡素化 cos(4π):22
cos(4π)
次の自明恒等式を使用する:cos(4π)=22
cos(x)2πn 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=22=22cos(x)−22sin(x)
=cos(4π)cos(x)+sin(4π)sin(x)22cos(x)−22sin(x)
cos(4π)cos(x)+sin(4π)sin(x)=22cos(x)+22sin(x)
cos(4π)cos(x)+sin(4π)sin(x)
簡素化 cos(4π):22
cos(4π)
次の自明恒等式を使用する:cos(4π)=22
cos(x)2πn 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=22=22cos(x)+sin(4π)sin(x)
簡素化 sin(4π):22
sin(4π)
次の自明恒等式を使用する:sin(4π)=22
sin(x)2πn 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=22=22cos(x)+22sin(x)
=22cos(x)+22sin(x)22cos(x)−22sin(x)
乗じる 22cos(x):22cos(x)
22cos(x)
分数を乗じる: a⋅cb=ca⋅b=22cos(x)
=22cos(x)+22sin(x)22cos(x)−22sin(x)
乗じる 22sin(x):22sin(x)
22sin(x)
分数を乗じる: a⋅cb=ca⋅b=22sin(x)
=22cos(x)+22sin(x)22cos(x)−22sin(x)
乗じる 22cos(x):22cos(x)
22cos(x)
分数を乗じる: a⋅cb=ca⋅b=22cos(x)
=22cos(x)+22sin(x)22cos(x)−22sin(x)
乗じる 22sin(x):22sin(x)
22sin(x)
分数を乗じる: a⋅cb=ca⋅b=22sin(x)
=22cos(x)+22sin(x)22cos(x)−22sin(x)
分数を組み合わせる 22cos(x)+22sin(x):22cos(x)+2sin(x)
規則を適用 ca±cb=ca±b=22cos(x)+2sin(x)
=22cos(x)+2sin(x)22cos(x)−22sin(x)
分数を組み合わせる 22cos(x)−22sin(x):22cos(x)−2sin(x)
規則を適用 ca±cb=ca±b=22cos(x)−2sin(x)
=22cos(x)+2sin(x)22cos(x)−2sin(x)
分数を割る: dcba=b⋅ca⋅d=2(2cos(x)+2sin(x))(2cos(x)−2sin(x))⋅2
共通因数を約分する:2=2cos(x)+2sin(x)2cos(x)−2sin(x)
共通項をくくり出す 2=2cos(x)+2sin(x)2(cos(x)−sin(x))
共通項をくくり出す 2=2(cos(x)+sin(x))2(cos(x)−sin(x))
共通因数を約分する:2=cos(x)+sin(x)cos(x)−sin(x)
=cos(x)+sin(x)cos(x)−sin(x)
cos(x)+sin(x)cos(x)−sin(x)+cos(x)−sin(x)cos(x)+sin(x)=4
簡素化 cos(x)+sin(x)cos(x)−sin(x)+cos(x)−sin(x)cos(x)+sin(x):(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)
cos(x)+sin(x)cos(x)−sin(x)+cos(x)−sin(x)cos(x)+sin(x)
以下の最小公倍数: cos(x)+sin(x),cos(x)−sin(x):(cos(x)+sin(x))(cos(x)−sin(x))
cos(x)+sin(x),cos(x)−sin(x)
最小公倍数 (LCM)
cos(x)+sin(x) または以下のいずれかに現れる因数で構成された式を計算する: cos(x)−sin(x)=(cos(x)+sin(x))(cos(x)−sin(x))
LCMに基づいて分数を調整する
該当する分母を乗じてLCMに変えるために
必要な量で各分子を乗じる (cos(x)+sin(x))(cos(x)−sin(x))
cos(x)+sin(x)cos(x)−sin(x)の場合:分母と分子に以下を乗じる: cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin(x)=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))(cos(x)−sin(x))=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))2
cos(x)−sin(x)cos(x)+sin(x)の場合:分母と分子に以下を乗じる: cos(x)+sin(x)cos(x)−sin(x)cos(x)+sin(x)=(cos(x)−sin(x))(cos(x)+sin(x))(cos(x)+sin(x))(cos(x)+sin(x))=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)+sin(x))2
=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))2+(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)+sin(x))2
分母が等しいので, 分数を組み合わせる: ca±cb=ca±b=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))2+(cos(x)+sin(x))2
拡張 (cos(x)−sin(x))2+(cos(x)+sin(x))2:2cos2(x)+2sin2(x)
(cos(x)−sin(x))2+(cos(x)+sin(x))2
(cos(x)−sin(x))2:cos2(x)−2cos(x)sin(x)+sin2(x)
完全平方式を適用する: (a−b)2=a2−2ab+b2a=cos(x),b=sin(x)
=cos2(x)−2cos(x)sin(x)+sin2(x)
=cos2(x)−2cos(x)sin(x)+sin2(x)+(cos(x)+sin(x))2
(cos(x)+sin(x))2:cos2(x)+2cos(x)sin(x)+sin2(x)
完全平方式を適用する: (a+b)2=a2+2ab+b2a=cos(x),b=sin(x)
=cos2(x)+2cos(x)sin(x)+sin2(x)
=cos2(x)−2cos(x)sin(x)+sin2(x)+cos2(x)+2cos(x)sin(x)+sin2(x)
簡素化 cos2(x)−2cos(x)sin(x)+sin2(x)+cos2(x)+2cos(x)sin(x)+sin2(x):2cos2(x)+2sin2(x)
cos2(x)−2cos(x)sin(x)+sin2(x)+cos2(x)+2cos(x)sin(x)+sin2(x)
類似した元を足す:−2cos(x)sin(x)+2cos(x)sin(x)=0=cos2(x)+sin2(x)+cos2(x)+sin2(x)
類似した元を足す:cos2(x)+cos2(x)=2cos2(x)=2cos2(x)+sin2(x)+sin2(x)
類似した元を足す:sin2(x)+sin2(x)=2sin2(x)=2cos2(x)+2sin2(x)
=2cos2(x)+2sin2(x)
=(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)
(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)=4
(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)=4
両辺から4を引く(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)−4=0
簡素化 (cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)−4:(cos(x)+sin(x))(cos(x)−sin(x))−2cos2(x)+6sin2(x)
(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)−4
元を分数に変換する: 4=(cos(x)+sin(x))(cos(x)−sin(x))4(cos(x)+sin(x))(cos(x)−sin(x))=(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)−(cos(x)+sin(x))(cos(x)−sin(x))4(cos(x)+sin(x))(cos(x)−sin(x))
分母が等しいので, 分数を組み合わせる: ca±cb=ca±b=(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)−4(cos(x)+sin(x))(cos(x)−sin(x))
拡張 2cos2(x)+2sin2(x)−4(cos(x)+sin(x))(cos(x)−sin(x)):−2cos2(x)+6sin2(x)
2cos2(x)+2sin2(x)−4(cos(x)+sin(x))(cos(x)−sin(x))
拡張 −4(cos(x)+sin(x))(cos(x)−sin(x)):−4cos2(x)+4sin2(x)
拡張 (cos(x)+sin(x))(cos(x)−sin(x)):cos2(x)−sin2(x)
(cos(x)+sin(x))(cos(x)−sin(x))
2乗の差の公式を適用する:(a+b)(a−b)=a2−b2a=cos(x),b=sin(x)=cos2(x)−sin2(x)
=−4(cos2(x)−sin2(x))
拡張 −4(cos2(x)−sin2(x)):−4cos2(x)+4sin2(x)
−4(cos2(x)−sin2(x))
分配法則を適用する: a(b−c)=ab−aca=−4,b=cos2(x),c=sin2(x)=−4cos2(x)−(−4)sin2(x)
マイナス・プラスの規則を適用する−(−a)=a=−4cos2(x)+4sin2(x)
=−4cos2(x)+4sin2(x)
=2cos2(x)+2sin2(x)−4cos2(x)+4sin2(x)
簡素化 2cos2(x)+2sin2(x)−4cos2(x)+4sin2(x):−2cos2(x)+6sin2(x)
2cos2(x)+2sin2(x)−4cos2(x)+4sin2(x)
類似した元を足す:2cos2(x)−4cos2(x)=−2cos2(x)=−2cos2(x)+2sin2(x)+4sin2(x)
類似した元を足す:2sin2(x)+4sin2(x)=6sin2(x)=−2cos2(x)+6sin2(x)
=−2cos2(x)+6sin2(x)
=(cos(x)+sin(x))(cos(x)−sin(x))−2cos2(x)+6sin2(x)
(cos(x)+sin(x))(cos(x)−sin(x))−2cos2(x)+6sin2(x)=0
g(x)f(x)=0⇒f(x)=0−2cos2(x)+6sin2(x)=0
因数 −2cos2(x)+6sin2(x):2(3sin(x)+cos(x))(3sin(x)−cos(x))
−2cos2(x)+6sin2(x)
6を書き換え 3⋅2=−2cos2(x)+3⋅2sin2(x)
共通項をくくり出す 2=2(−cos2(x)+3sin2(x))
因数 3sin2(x)−cos2(x):(3sin(x)+cos(x))(3sin(x)−cos(x))
3sin2(x)−cos2(x)
3sin2(x)−cos2(x)を書き換え (3sin(x))2−cos2(x)
3sin2(x)−cos2(x)
累乗根の規則を適用する: a=(a)23=(3)2=(3)2sin2(x)−cos2(x)
指数の規則を適用する: ambm=(ab)m(3)2sin2(x)=(3sin(x))2=(3sin(x))2−cos2(x)
=(3sin(x))2−cos2(x)
2乗の差の公式を適用する:x2−y2=(x+y)(x−y)(3sin(x))2−cos2(x)=(3sin(x)+cos(x))(3sin(x)−cos(x))=(3sin(x)+cos(x))(3sin(x)−cos(x))
=2(3sin(x)+cos(x))(3sin(x)−cos(x))
2(3sin(x)+cos(x))(3sin(x)−cos(x))=0
各部分を別個に解く3sin(x)+cos(x)=0or3sin(x)−cos(x)=0
3sin(x)+cos(x)=0:x=65π+πn
3sin(x)+cos(x)=0
三角関数の公式を使用して書き換える
3sin(x)+cos(x)=0
cos(x),cos(x)=0で両辺を割るcos(x)3sin(x)+cos(x)=cos(x)0
簡素化cos(x)3sin(x)+1=0
基本的な三角関数の公式を使用する: cos(x)sin(x)=tan(x)3tan(x)+1=0
3tan(x)+1=0
1を右側に移動します
3tan(x)+1=0
両辺から1を引く3tan(x)+1−1=0−1
簡素化3tan(x)=−1
3tan(x)=−1
以下で両辺を割る3
3tan(x)=−1
以下で両辺を割る333tan(x)=3−1
簡素化
33tan(x)=3−1
簡素化 33tan(x):tan(x)
33tan(x)
共通因数を約分する:3=tan(x)
簡素化 3−1:−33
3−1
分数の規則を適用する: b−a=−ba=−31
有理化する −31:−33
−31
共役で乗じる 33=−331⋅3
1⋅3=3
33=3
33
累乗根の規則を適用する: aa=a33=3=3
=−33
=−33
tan(x)=−33
tan(x)=−33
tan(x)=−33
以下の一般解 tan(x)=−33
tan(x)πn 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πtan(x)03313±∞−3−1−33
x=65π+πn
x=65π+πn
3sin(x)−cos(x)=0:x=6π+πn
3sin(x)−cos(x)=0
三角関数の公式を使用して書き換える
3sin(x)−cos(x)=0
cos(x),cos(x)=0で両辺を割るcos(x)3sin(x)−cos(x)=cos(x)0
簡素化cos(x)3sin(x)−1=0
基本的な三角関数の公式を使用する: cos(x)sin(x)=tan(x)3tan(x)−1=0
3tan(x)−1=0
1を右側に移動します
3tan(x)−1=0
両辺に1を足す3tan(x)−1+1=0+1
簡素化3tan(x)=1
3tan(x)=1
以下で両辺を割る3
3tan(x)=1
以下で両辺を割る333tan(x)=31
簡素化
33tan(x)=31
簡素化 33tan(x):tan(x)
33tan(x)
共通因数を約分する:3=tan(x)
簡素化 31:33
31
共役で乗じる 33=331⋅3
1⋅3=3
33=3
33
累乗根の規則を適用する: aa=a33=3=3
=33
tan(x)=33
tan(x)=33
tan(x)=33
以下の一般解 tan(x)=33
tan(x)πn 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πtan(x)03313±∞−3−1−33
x=6π+πn
x=6π+πn
すべての解を組み合わせるx=65π+πn,x=6π+πn