Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cosh(2x)-sinh(2x)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cosh(2x)−sinh(2x)=2

Solution

x=21​ln(3),x=0
+1
Degrees
x=31.47292…∘,x=0∘
Solution steps
2cosh(2x)−sinh(2x)=2
Rewrite using trig identities
2cosh(2x)−sinh(2x)=2
Use the Hyperbolic identity: sinh(x)=2ex−e−x​2cosh(2x)−2e2x−e−2x​=2
Use the Hyperbolic identity: cosh(x)=2ex+e−x​2⋅2e2x+e−2x​−2e2x−e−2x​=2
2⋅2e2x+e−2x​−2e2x−e−2x​=2
2⋅2e2x+e−2x​−2e2x−e−2x​=2:x=21​ln(3),x=0
2⋅2e2x+e−2x​−2e2x−e−2x​=2
Multiply both sides by 22⋅2e2x+e−2x​⋅2−2e2x−e−2x​⋅2=2⋅2
Simplify2(e2x+e−2x)−(e2x−e−2x)=4
Apply exponent rules
2(e2x+e−2x)−(e2x−e−2x)=4
Apply exponent rule: abc=(ab)ce2x=(ex)2,e−2x=(ex)−22((ex)2+(ex)−2)−((ex)2−(ex)−2)=4
2((ex)2+(ex)−2)−((ex)2−(ex)−2)=4
Rewrite the equation with ex=u2((u)2+(u)−2)−((u)2−(u)−2)=4
Solve 2(u2+u−2)−(u2−u−2)=4:u=3​,u=−3​,u=1,u=−1
2(u2+u−2)−(u2−u−2)=4
Refine2(u2+u21​)−(u2−u21​)=4
Simplify −(u2−u21​):−u2+u21​
−(u2−u21​)
Distribute parentheses=−(u2)−(−u21​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−u2+u21​
2(u2+u21​)−u2+u21​=4
Multiply both sides by u2
2(u2+u21​)−u2+u21​=4
Multiply both sides by u22(u2+u21​)u2−u2u2+u21​u2=4u2
Simplify
2(u2+u21​)u2−u2u2+u21​u2=4u2
Simplify −u2u2:−u4
−u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=−u2+2
Add the numbers: 2+2=4=−u4
Simplify u21​u2:1
u21​u2
Multiply fractions: a⋅cb​=ca⋅b​=u21⋅u2​
Cancel the common factor: u2=1
2(u2+u21​)u2−u4+1=4u2
2(u2+u21​)u2−u4+1=4u2
2(u2+u21​)u2−u4+1=4u2
Expand 2(u2+u21​)u2−u4+1:u4+3
2(u2+u21​)u2−u4+1
=2u2(u2+u21​)−u4+1
Expand 2u2(u2+u21​):2u4+2
2u2(u2+u21​)
Apply the distributive law: a(b+c)=ab+aca=2u2,b=u2,c=u21​=2u2u2+2u2u21​
=2u2u2+2⋅u21​u2
Simplify 2u2u2+2⋅u21​u2:2u4+2
2u2u2+2⋅u21​u2
2u2u2=2u4
2u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=2u2+2
Add the numbers: 2+2=4=2u4
2⋅u21​u2=2
2⋅u21​u2
Multiply fractions: a⋅cb​=ca⋅b​=u21⋅2u2​
Cancel the common factor: u2=1⋅2
Multiply the numbers: 1⋅2=2=2
=2u4+2
=2u4+2
=2u4+2−u4+1
Simplify 2u4+2−u4+1:u4+3
2u4+2−u4+1
Group like terms=2u4−u4+2+1
Add similar elements: 2u4−u4=u4=u4+2+1
Add the numbers: 2+1=3=u4+3
=u4+3
u4+3=4u2
Solve u4+3=4u2:u=3​,u=−3​,u=1,u=−1
u4+3=4u2
Move 4u2to the left side
u4+3=4u2
Subtract 4u2 from both sidesu4+3−4u2=4u2−4u2
Simplifyu4+3−4u2=0
u4+3−4u2=0
Write in the standard form an​xn+…+a1​x+a0​=0u4−4u2+3=0
Rewrite the equation with v=u2 and v2=u4v2−4v+3=0
Solve v2−4v+3=0:v=3,v=1
v2−4v+3=0
Solve with the quadratic formula
v2−4v+3=0
Quadratic Equation Formula:
For a=1,b=−4,c=3v1,2​=2⋅1−(−4)±(−4)2−4⋅1⋅3​​
v1,2​=2⋅1−(−4)±(−4)2−4⋅1⋅3​​
(−4)2−4⋅1⋅3​=2
(−4)2−4⋅1⋅3​
Apply exponent rule: (−a)n=an,if n is even(−4)2=42=42−4⋅1⋅3​
Multiply the numbers: 4⋅1⋅3=12=42−12​
42=16=16−12​
Subtract the numbers: 16−12=4=4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
v1,2​=2⋅1−(−4)±2​
Separate the solutionsv1​=2⋅1−(−4)+2​,v2​=2⋅1−(−4)−2​
v=2⋅1−(−4)+2​:3
2⋅1−(−4)+2​
Apply rule −(−a)=a=2⋅14+2​
Add the numbers: 4+2=6=2⋅16​
Multiply the numbers: 2⋅1=2=26​
Divide the numbers: 26​=3=3
v=2⋅1−(−4)−2​:1
2⋅1−(−4)−2​
Apply rule −(−a)=a=2⋅14−2​
Subtract the numbers: 4−2=2=2⋅12​
Multiply the numbers: 2⋅1=2=22​
Apply rule aa​=1=1
The solutions to the quadratic equation are:v=3,v=1
v=3,v=1
Substitute back v=u2,solve for u
Solve u2=3:u=3​,u=−3​
u2=3
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=3​,u=−3​
Solve u2=1:u=1,u=−1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply radical rule: 1​=1=1
−1​=−1
−1​
Apply radical rule: 1​=11​=1=−1
u=1,u=−1
The solutions are
u=3​,u=−3​,u=1,u=−1
u=3​,u=−3​,u=1,u=−1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 2(u2+u−2)−(u2−u−2) and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=3​,u=−3​,u=1,u=−1
u=3​,u=−3​,u=1,u=−1
Substitute back u=ex,solve for x
Solve ex=3​:x=21​ln(3)
ex=3​
Apply exponent rules
ex=3​
Apply exponent rule: a​=a21​3​=321​ex=321​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(321​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(321​)
Apply log rule: ln(xa)=a⋅ln(x)ln(321​)=21​ln(3)x=21​ln(3)
x=21​ln(3)
Solve ex=−3​:No Solution for x∈R
ex=−3​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=1:x=0
ex=1
Apply exponent rules
ex=1
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1)
Simplify ln(1):0
ln(1)
Apply log rule: loga​(1)=0=0
x=0
x=0
Solve ex=−1:No Solution for x∈R
ex=−1
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=21​ln(3),x=0
x=21​ln(3),x=0

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3cot(2x)-1=0sec(x)=tan(x)-1tan(θ)= 5/42cos(x)sin(x)-3sin(x)=0tan^2(θ)-sqrt(3)tan(θ)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 2cosh(2x)-sinh(2x)=2 ?

    The general solution for 2cosh(2x)-sinh(2x)=2 is x= 1/2 ln(3),x=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024