Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

5tan^2(θ)-tan(θ)+12=8tan(θ)+8

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

5tan2(θ)−tan(θ)+12=8tan(θ)+8

Solution

θ=4π​+πn,θ=0.67474…+πn
+1
Degrees
θ=45∘+180∘n,θ=38.65980…∘+180∘n
Solution steps
5tan2(θ)−tan(θ)+12=8tan(θ)+8
Solve by substitution
5tan2(θ)−tan(θ)+12=8tan(θ)+8
Let: tan(θ)=u5u2−u+12=8u+8
5u2−u+12=8u+8:u=1,u=54​
5u2−u+12=8u+8
Move 8to the left side
5u2−u+12=8u+8
Subtract 8 from both sides5u2−u+12−8=8u+8−8
Simplify5u2−u+4=8u
5u2−u+4=8u
Move 8uto the left side
5u2−u+4=8u
Subtract 8u from both sides5u2−u+4−8u=8u−8u
Simplify5u2−9u+4=0
5u2−9u+4=0
Solve with the quadratic formula
5u2−9u+4=0
Quadratic Equation Formula:
For a=5,b=−9,c=4u1,2​=2⋅5−(−9)±(−9)2−4⋅5⋅4​​
u1,2​=2⋅5−(−9)±(−9)2−4⋅5⋅4​​
(−9)2−4⋅5⋅4​=1
(−9)2−4⋅5⋅4​
Apply exponent rule: (−a)n=an,if n is even(−9)2=92=92−4⋅5⋅4​
Multiply the numbers: 4⋅5⋅4=80=92−80​
92=81=81−80​
Subtract the numbers: 81−80=1=1​
Apply rule 1​=1=1
u1,2​=2⋅5−(−9)±1​
Separate the solutionsu1​=2⋅5−(−9)+1​,u2​=2⋅5−(−9)−1​
u=2⋅5−(−9)+1​:1
2⋅5−(−9)+1​
Apply rule −(−a)=a=2⋅59+1​
Add the numbers: 9+1=10=2⋅510​
Multiply the numbers: 2⋅5=10=1010​
Apply rule aa​=1=1
u=2⋅5−(−9)−1​:54​
2⋅5−(−9)−1​
Apply rule −(−a)=a=2⋅59−1​
Subtract the numbers: 9−1=8=2⋅58​
Multiply the numbers: 2⋅5=10=108​
Cancel the common factor: 2=54​
The solutions to the quadratic equation are:u=1,u=54​
Substitute back u=tan(θ)tan(θ)=1,tan(θ)=54​
tan(θ)=1,tan(θ)=54​
tan(θ)=1:θ=4π​+πn
tan(θ)=1
General solutions for tan(θ)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
θ=4π​+πn
θ=4π​+πn
tan(θ)=54​:θ=arctan(54​)+πn
tan(θ)=54​
Apply trig inverse properties
tan(θ)=54​
General solutions for tan(θ)=54​tan(x)=a⇒x=arctan(a)+πnθ=arctan(54​)+πn
θ=arctan(54​)+πn
Combine all the solutionsθ=4π​+πn,θ=arctan(54​)+πn
Show solutions in decimal formθ=4π​+πn,θ=0.67474…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

16sin^2(θ)-4=02sqrt(2)cos(x)-2=0cos^2(x)+2sin(x)=0cos(3θ)= 1/2sin(3x+5)=cos(4x+1)

Frequently Asked Questions (FAQ)

  • What is the general solution for 5tan^2(θ)-tan(θ)+12=8tan(θ)+8 ?

    The general solution for 5tan^2(θ)-tan(θ)+12=8tan(θ)+8 is θ= pi/4+pin,θ=0.67474…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024