Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x^2)=sin(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x2)=sin(x)

Solution

x=2−1+1−4(−4πn−π)​​,x=2−1−1−4(−4πn−π)​​,x=2−1+1−4(−4πn−3π)​​,x=2−1−1−4(−4πn−3π)​​,x=21+1+16πn​​,x=21−1+16πn​​,x=21+1−4(−4πn−2π)​​,x=21−1−4(−4πn−2π)​​
+1
Degrees
x=−28.64788…∘+228.88185…∘n,x=−28.64788…∘−228.88185…∘n,x=−28.64788…∘+270.20988…∘n,x=−28.64788…∘−270.20988…∘n,x=28.64788…∘+205.11865…∘n,x=28.64788…∘−205.11865…∘n,x=28.64788…∘+250.39996…∘n,x=28.64788…∘−250.39996…∘n
Solution steps
sin(x2)=sin(x)
Subtract sin(x) from both sidessin(x2)−sin(x)=0
Rewrite using trig identities
−sin(x)+sin(x2)
Use the Sum to Product identity: sin(s)−sin(t)=2sin(2s−t​)cos(2s+t​)=2sin(2x2−x​)cos(2x2+x​)
2cos(2x+x2​)sin(2−x+x2​)=0
Solving each part separatelycos(2x+x2​)=0orsin(2−x+x2​)=0
cos(2x+x2​)=0:x=2−1+1−4(−4πn−π)​​,x=2−1−1−4(−4πn−π)​​,x=2−1+1−4(−4πn−3π)​​,x=2−1−1−4(−4πn−3π)​​
cos(2x+x2​)=0
General solutions for cos(2x+x2​)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2x+x2​=2π​+2πn,2x+x2​=23π​+2πn
2x+x2​=2π​+2πn,2x+x2​=23π​+2πn
Solve 2x+x2​=2π​+2πn:x=2−1+1−4(−4πn−π)​​,x=2−1−1−4(−4πn−π)​​
2x+x2​=2π​+2πn
Multiply both sides by 2
2x+x2​=2π​+2πn
Multiply both sides by 22x+x2​⋅2=2π​⋅2+2πn⋅2
Simplifyx+x2=π+4πn
x+x2=π+4πn
Move 4πnto the left side
x+x2=π+4πn
Subtract 4πn from both sidesx+x2−4πn=π+4πn−4πn
Simplifyx+x2−4πn=π
x+x2−4πn=π
Move πto the left side
x+x2−4πn=π
Subtract π from both sidesx+x2−4πn−π=π−π
Simplifyx+x2−4πn−π=0
x+x2−4πn−π=0
Write in the standard form ax2+bx+c=0x2+x−4πn−π=0
Solve with the quadratic formula
x2+x−4πn−π=0
Quadratic Equation Formula:
For a=1,b=1,c=−4πn−πx1,2​=2⋅1−1±12−4⋅1⋅(−4πn−π)​​
x1,2​=2⋅1−1±12−4⋅1⋅(−4πn−π)​​
Simplify 12−4⋅1⋅(−4πn−π)​:1−4(−4πn−π)​
12−4⋅1⋅(−4πn−π)​
Apply rule 1a=112=1=1−4⋅1⋅(−4πn−π)​
Multiply the numbers: 4⋅1=4=1−4(−4πn−π)​
x1,2​=2⋅1−1±1−4(−4πn−π)​​
Separate the solutionsx1​=2⋅1−1+1−4(−4πn−π)​​,x2​=2⋅1−1−1−4(−4πn−π)​​
x=2⋅1−1+1−4(−4πn−π)​​:2−1+1−4(−4πn−π)​​
2⋅1−1+1−4(−4πn−π)​​
Multiply the numbers: 2⋅1=2=2−1+−4(−4πn−π)+1​​
x=2⋅1−1−1−4(−4πn−π)​​:2−1−1−4(−4πn−π)​​
2⋅1−1−1−4(−4πn−π)​​
Multiply the numbers: 2⋅1=2=2−1−−4(−4πn−π)+1​​
The solutions to the quadratic equation are:x=2−1+1−4(−4πn−π)​​,x=2−1−1−4(−4πn−π)​​
Solve 2x+x2​=23π​+2πn:x=2−1+1−4(−4πn−3π)​​,x=2−1−1−4(−4πn−3π)​​
2x+x2​=23π​+2πn
Multiply both sides by 2
2x+x2​=23π​+2πn
Multiply both sides by 22x+x2​⋅2=23π​⋅2+2πn⋅2
Simplifyx+x2=3π+4πn
x+x2=3π+4πn
Move 4πnto the left side
x+x2=3π+4πn
Subtract 4πn from both sidesx+x2−4πn=3π+4πn−4πn
Simplifyx+x2−4πn=3π
x+x2−4πn=3π
Move 3πto the left side
x+x2−4πn=3π
Subtract 3π from both sidesx+x2−4πn−3π=3π−3π
Simplifyx+x2−4πn−3π=0
x+x2−4πn−3π=0
Write in the standard form ax2+bx+c=0x2+x−4πn−3π=0
Solve with the quadratic formula
x2+x−4πn−3π=0
Quadratic Equation Formula:
For a=1,b=1,c=−4πn−3πx1,2​=2⋅1−1±12−4⋅1⋅(−4πn−3π)​​
x1,2​=2⋅1−1±12−4⋅1⋅(−4πn−3π)​​
Simplify 12−4⋅1⋅(−4πn−3π)​:1−4(−4πn−3π)​
12−4⋅1⋅(−4πn−3π)​
Apply rule 1a=112=1=1−4⋅1⋅(−4πn−3π)​
Multiply the numbers: 4⋅1=4=1−4(−4πn−3π)​
x1,2​=2⋅1−1±1−4(−4πn−3π)​​
Separate the solutionsx1​=2⋅1−1+1−4(−4πn−3π)​​,x2​=2⋅1−1−1−4(−4πn−3π)​​
x=2⋅1−1+1−4(−4πn−3π)​​:2−1+1−4(−4πn−3π)​​
2⋅1−1+1−4(−4πn−3π)​​
Multiply the numbers: 2⋅1=2=2−1+−4(−4πn−3π)+1​​
x=2⋅1−1−1−4(−4πn−3π)​​:2−1−1−4(−4πn−3π)​​
2⋅1−1−1−4(−4πn−3π)​​
Multiply the numbers: 2⋅1=2=2−1−−4(−4πn−3π)+1​​
The solutions to the quadratic equation are:x=2−1+1−4(−4πn−3π)​​,x=2−1−1−4(−4πn−3π)​​
x=2−1+1−4(−4πn−π)​​,x=2−1−1−4(−4πn−π)​​,x=2−1+1−4(−4πn−3π)​​,x=2−1−1−4(−4πn−3π)​​
sin(2−x+x2​)=0:x=21+1+16πn​​,x=21−1+16πn​​,x=21+1−4(−4πn−2π)​​,x=21−1−4(−4πn−2π)​​
sin(2−x+x2​)=0
General solutions for sin(2−x+x2​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2−x+x2​=0+2πn,2−x+x2​=π+2πn
2−x+x2​=0+2πn,2−x+x2​=π+2πn
Solve 2−x+x2​=0+2πn:x=21+1+16πn​​,x=21−1+16πn​​
2−x+x2​=0+2πn
Multiply both sides by 2
2−x+x2​=0+2πn
Multiply both sides by 22−x+x2​⋅2=0⋅2+2πn⋅2
Simplify−x+x2=0+4πn
−x+x2=0+4πn
−x+x2=4πn
Move 4πnto the left side
−x+x2=4πn
Subtract 4πn from both sides−x+x2−4πn=4πn−4πn
Simplify−x+x2−4πn=0
−x+x2−4πn=0
Write in the standard form ax2+bx+c=0x2−x−4πn=0
Solve with the quadratic formula
x2−x−4πn=0
Quadratic Equation Formula:
For a=1,b=−1,c=−4πnx1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅(−4πn)​​
x1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅(−4πn)​​
Simplify (−1)2−4⋅1⋅(−4πn)​:1+16πn​
(−1)2−4⋅1⋅(−4πn)​
Apply rule −(−a)=a=(−1)2+4⋅1⋅4πn​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅4πn=16πn
4⋅1⋅4πn
Multiply the numbers: 4⋅1⋅4=16=16πn
=1+16πn​
x1,2​=2⋅1−(−1)±1+16πn​​
Separate the solutionsx1​=2⋅1−(−1)+1+16πn​​,x2​=2⋅1−(−1)−1+16πn​​
x=2⋅1−(−1)+1+16πn​​:21+1+16πn​​
2⋅1−(−1)+1+16πn​​
Apply rule −(−a)=a=2⋅11+1+16πn​​
Multiply the numbers: 2⋅1=2=21+16πn+1​​
x=2⋅1−(−1)−1+16πn​​:21−1+16πn​​
2⋅1−(−1)−1+16πn​​
Apply rule −(−a)=a=2⋅11−1+16πn​​
Multiply the numbers: 2⋅1=2=21−16πn+1​​
The solutions to the quadratic equation are:x=21+1+16πn​​,x=21−1+16πn​​
Solve 2−x+x2​=π+2πn:x=21+1−4(−4πn−2π)​​,x=21−1−4(−4πn−2π)​​
2−x+x2​=π+2πn
Multiply both sides by 2
2−x+x2​=π+2πn
Multiply both sides by 22−x+x2​⋅2=π2+2πn⋅2
Simplify−x+x2=2π+4πn
−x+x2=2π+4πn
Move 4πnto the left side
−x+x2=2π+4πn
Subtract 4πn from both sides−x+x2−4πn=2π+4πn−4πn
Simplify−x+x2−4πn=2π
−x+x2−4πn=2π
Move 2πto the left side
−x+x2−4πn=2π
Subtract 2π from both sides−x+x2−4πn−2π=2π−2π
Simplify−x+x2−4πn−2π=0
−x+x2−4πn−2π=0
Write in the standard form ax2+bx+c=0x2−x−4πn−2π=0
Solve with the quadratic formula
x2−x−4πn−2π=0
Quadratic Equation Formula:
For a=1,b=−1,c=−4πn−2πx1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅(−4πn−2π)​​
x1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅(−4πn−2π)​​
Simplify (−1)2−4⋅1⋅(−4πn−2π)​:1−4(−4πn−2π)​
(−1)2−4⋅1⋅(−4πn−2π)​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅(−4πn−2π)=4(−4πn−2π)
4⋅1⋅(−4πn−2π)
Multiply the numbers: 4⋅1=4=4(−4πn−2π)
=1−4(−4πn−2π)​
x1,2​=2⋅1−(−1)±1−4(−4πn−2π)​​
Separate the solutionsx1​=2⋅1−(−1)+1−4(−4πn−2π)​​,x2​=2⋅1−(−1)−1−4(−4πn−2π)​​
x=2⋅1−(−1)+1−4(−4πn−2π)​​:21+1−4(−4πn−2π)​​
2⋅1−(−1)+1−4(−4πn−2π)​​
Apply rule −(−a)=a=2⋅11+1−4(−4πn−2π)​​
Multiply the numbers: 2⋅1=2=21+−4(−4πn−2π)+1​​
x=2⋅1−(−1)−1−4(−4πn−2π)​​:21−1−4(−4πn−2π)​​
2⋅1−(−1)−1−4(−4πn−2π)​​
Apply rule −(−a)=a=2⋅11−1−4(−4πn−2π)​​
Multiply the numbers: 2⋅1=2=21−−4(−4πn−2π)+1​​
The solutions to the quadratic equation are:x=21+1−4(−4πn−2π)​​,x=21−1−4(−4πn−2π)​​
x=21+1+16πn​​,x=21−1+16πn​​,x=21+1−4(−4πn−2π)​​,x=21−1−4(−4πn−2π)​​
Combine all the solutionsx=2−1+1−4(−4πn−π)​​,x=2−1−1−4(−4πn−π)​​,x=2−1+1−4(−4πn−3π)​​,x=2−1−1−4(−4πn−3π)​​,x=21+1+16πn​​,x=21−1+16πn​​,x=21+1−4(−4πn−2π)​​,x=21−1−4(−4πn−2π)​​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)=(sqrt(2))/2 csc(θ)2sin(x)cos(x)= 1/2tan(θ)=0.75cos(6x)=1csc^2(θ)-2csc(θ)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x^2)=sin(x) ?

    The general solution for sin(x^2)=sin(x) is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024