Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)+3cot(x)=5sec(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)+3cot(x)=5sec(x)

Solution

x=6π​+2πn,x=65π​+2πn
+1
Degrees
x=30∘+360∘n,x=150∘+360∘n
Solution steps
tan(x)+3cot(x)=5sec(x)
Subtract 5sec(x) from both sidestan(x)+3cot(x)−5sec(x)=0
Express with sin, cos
tan(x)+3cot(x)−5sec(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(x)sin(x)​+3cot(x)−5sec(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=cos(x)sin(x)​+3⋅sin(x)cos(x)​−5sec(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=cos(x)sin(x)​+3⋅sin(x)cos(x)​−5⋅cos(x)1​
Simplify cos(x)sin(x)​+3⋅sin(x)cos(x)​−5⋅cos(x)1​:cos(x)sin(x)sin(x)(sin(x)−5)+3cos2(x)​
cos(x)sin(x)​+3⋅sin(x)cos(x)​−5⋅cos(x)1​
3⋅sin(x)cos(x)​=sin(x)3cos(x)​
3⋅sin(x)cos(x)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)⋅3​
5⋅cos(x)1​=cos(x)5​
5⋅cos(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)1⋅5​
Multiply the numbers: 1⋅5=5=cos(x)5​
=cos(x)sin(x)​+sin(x)3cos(x)​−cos(x)5​
Combine the fractions cos(x)sin(x)​−cos(x)5​:cos(x)sin(x)−5​
Apply rule ca​±cb​=ca±b​=cos(x)sin(x)−5​
=cos(x)sin(x)−5​+sin(x)3cos(x)​
Least Common Multiplier of cos(x),sin(x):cos(x)sin(x)
cos(x),sin(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x) or sin(x)=cos(x)sin(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(x)sin(x)
For cos(x)sin(x)−5​:multiply the denominator and numerator by sin(x)cos(x)sin(x)−5​=cos(x)sin(x)(sin(x)−5)sin(x)​
For sin(x)cos(x)⋅3​:multiply the denominator and numerator by cos(x)sin(x)cos(x)⋅3​=sin(x)cos(x)cos(x)⋅3cos(x)​=cos(x)sin(x)3cos2(x)​
=cos(x)sin(x)(sin(x)−5)sin(x)​+cos(x)sin(x)3cos2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)(sin(x)−5)sin(x)+3cos2(x)​
=cos(x)sin(x)sin(x)(sin(x)−5)+3cos2(x)​
cos(x)sin(x)(−5+sin(x))sin(x)+3cos2(x)​=0
g(x)f(x)​=0⇒f(x)=0(−5+sin(x))sin(x)+3cos2(x)=0
Rewrite using trig identities
(−5+sin(x))sin(x)+3cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(−5+sin(x))sin(x)+3(1−sin2(x))
Simplify (−5+sin(x))sin(x)+3(1−sin2(x)):−5sin(x)−2sin2(x)+3
(−5+sin(x))sin(x)+3(1−sin2(x))
=sin(x)(−5+sin(x))+3(1−sin2(x))
Expand sin(x)(−5+sin(x)):−5sin(x)+sin2(x)
sin(x)(−5+sin(x))
Apply the distributive law: a(b+c)=ab+aca=sin(x),b=−5,c=sin(x)=sin(x)(−5)+sin(x)sin(x)
Apply minus-plus rules+(−a)=−a=−5sin(x)+sin(x)sin(x)
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
=−5sin(x)+sin2(x)
=−5sin(x)+sin2(x)+3(1−sin2(x))
Expand 3(1−sin2(x)):3−3sin2(x)
3(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=3,b=1,c=sin2(x)=3⋅1−3sin2(x)
Multiply the numbers: 3⋅1=3=3−3sin2(x)
=−5sin(x)+sin2(x)+3−3sin2(x)
Simplify −5sin(x)+sin2(x)+3−3sin2(x):−5sin(x)−2sin2(x)+3
−5sin(x)+sin2(x)+3−3sin2(x)
Group like terms=−5sin(x)+sin2(x)−3sin2(x)+3
Add similar elements: sin2(x)−3sin2(x)=−2sin2(x)=−5sin(x)−2sin2(x)+3
=−5sin(x)−2sin2(x)+3
=−5sin(x)−2sin2(x)+3
3−2sin2(x)−5sin(x)=0
Solve by substitution
3−2sin2(x)−5sin(x)=0
Let: sin(x)=u3−2u2−5u=0
3−2u2−5u=0:u=−3,u=21​
3−2u2−5u=0
Write in the standard form ax2+bx+c=0−2u2−5u+3=0
Solve with the quadratic formula
−2u2−5u+3=0
Quadratic Equation Formula:
For a=−2,b=−5,c=3u1,2​=2(−2)−(−5)±(−5)2−4(−2)⋅3​​
u1,2​=2(−2)−(−5)±(−5)2−4(−2)⋅3​​
(−5)2−4(−2)⋅3​=7
(−5)2−4(−2)⋅3​
Apply rule −(−a)=a=(−5)2+4⋅2⋅3​
Apply exponent rule: (−a)n=an,if n is even(−5)2=52=52+4⋅2⋅3​
Multiply the numbers: 4⋅2⋅3=24=52+24​
52=25=25+24​
Add the numbers: 25+24=49=49​
Factor the number: 49=72=72​
Apply radical rule: 72​=7=7
u1,2​=2(−2)−(−5)±7​
Separate the solutionsu1​=2(−2)−(−5)+7​,u2​=2(−2)−(−5)−7​
u=2(−2)−(−5)+7​:−3
2(−2)−(−5)+7​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅25+7​
Add the numbers: 5+7=12=−2⋅212​
Multiply the numbers: 2⋅2=4=−412​
Apply the fraction rule: −ba​=−ba​=−412​
Divide the numbers: 412​=3=−3
u=2(−2)−(−5)−7​:21​
2(−2)−(−5)−7​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅25−7​
Subtract the numbers: 5−7=−2=−2⋅2−2​
Multiply the numbers: 2⋅2=4=−4−2​
Apply the fraction rule: −b−a​=ba​=42​
Cancel the common factor: 2=21​
The solutions to the quadratic equation are:u=−3,u=21​
Substitute back u=sin(x)sin(x)=−3,sin(x)=21​
sin(x)=−3,sin(x)=21​
sin(x)=−3:No Solution
sin(x)=−3
−1≤sin(x)≤1NoSolution
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
Combine all the solutionsx=6π​+2πn,x=65π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6sin(θ)+3=0sqrt(2)cos(x)+sin(2x)=0sin(3θ)=-1/2sin(x)(sqrt(2)+2cos(x))=0sec^2(x)+5tan(x)=7

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x)+3cot(x)=5sec(x) ?

    The general solution for tan(x)+3cot(x)=5sec(x) is x= pi/6+2pin,x=(5pi)/6+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024