Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(cos^2(2x)+1)+sin(2x)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(2x)+1​+sin(2x)=2

Solution

x=4π​+πn
+1
Degrees
x=45∘+180∘n
Solution steps
cos2(2x)+1​+sin(2x)=2
Subtract 2 from both sidescos2(2x)+1​+sin(2x)−2=0
Rewrite using trig identities
−2+sin(2x)+1+cos2(2x)​
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−2+sin(2x)+1+1−sin2(2x)​
Simplify=−2+sin(2x)+−sin2(2x)+2​
−2+sin(2x)+2−sin2(2x)​=0
Solve by substitution
−2+sin(2x)+2−sin2(2x)​=0
Let: sin(2x)=u−2+u+2−u2​=0
−2+u+2−u2​=0:u=1
−2+u+2−u2​=0
Remove square roots
−2+u+2−u2​=0
Subtract u from both sides−2+u+2−u2​−u=0−u
Simplify2−u2​−2=−u
Add 2 to both sides2−u2​−2+2=−u+2
Simplify2−u2​=−u+2
Square both sides:2−u2=u2−4u+4
−2+u+2−u2​=0
(2−u2​)2=(−u+2)2
Expand (2−u2​)2:2−u2
(2−u2​)2
Apply radical rule: a​=a21​=((2−u2)21​)2
Apply exponent rule: (ab)c=abc=(2−u2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2−u2
Expand (−u+2)2:u2−4u+4
(−u+2)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=−u,b=2
=(−u)2+2(−u)⋅2+22
Simplify (−u)2+2(−u)⋅2+22:u2−4u+4
(−u)2+2(−u)⋅2+22
Remove parentheses: (−a)=−a=(−u)2−2u⋅2+22
Apply exponent rule: (−a)n=an,if n is even(−u)2=u2=u2−2⋅2u+22
Refine=u2−4u+4
=u2−4u+4
2−u2=u2−4u+4
2−u2=u2−4u+4
2−u2=u2−4u+4
Solve 2−u2=u2−4u+4:u=1
2−u2=u2−4u+4
Switch sidesu2−4u+4=2−u2
Move u2to the left side
u2−4u+4=2−u2
Add u2 to both sidesu2−4u+4+u2=2−u2+u2
Simplify2u2−4u+4=2
2u2−4u+4=2
Move 2to the left side
2u2−4u+4=2
Subtract 2 from both sides2u2−4u+4−2=2−2
Simplify2u2−4u+2=0
2u2−4u+2=0
Solve with the quadratic formula
2u2−4u+2=0
Quadratic Equation Formula:
For a=2,b=−4,c=2u1,2​=2⋅2−(−4)±(−4)2−4⋅2⋅2​​
u1,2​=2⋅2−(−4)±(−4)2−4⋅2⋅2​​
(−4)2−4⋅2⋅2=0
(−4)2−4⋅2⋅2
Apply exponent rule: (−a)n=an,if n is even(−4)2=42=42−4⋅2⋅2
Multiply the numbers: 4⋅2⋅2=16=42−16
42=16=16−16
Subtract the numbers: 16−16=0=0
u1,2​=2⋅2−(−4)±0​​
u=2⋅2−(−4)​
2⋅2−(−4)​=1
2⋅2−(−4)​
Apply rule −(−a)=a=2⋅24​
Multiply the numbers: 2⋅2=4=44​
Apply rule aa​=1=1
u=1
The solution to the quadratic equation is:u=1
u=1
Verify Solutions:u=1True
Check the solutions by plugging them into −2+u+2−u2​=0
Remove the ones that don't agree with the equation.
Plug in u=1:True
−2+1+2−12​=0
−2+1+2−12​=0
−2+1+2−12​
Apply rule 1a=112=1=−2+1+2−1​
2−1​=1
2−1​
Subtract the numbers: 2−1=1=1​
Apply rule 1​=1=1
=−2+1+1
Add/Subtract the numbers: −2+1+1=0=0
0=0
True
The solution isu=1
Substitute back u=sin(2x)sin(2x)=1
sin(2x)=1
sin(2x)=1:x=4π​+πn
sin(2x)=1
General solutions for sin(2x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=2π​+2πn
2x=2π​+2πn
Solve 2x=2π​+2πn:x=4π​+πn
2x=2π​+2πn
Divide both sides by 2
2x=2π​+2πn
Divide both sides by 222x​=22π​​+22πn​
Simplify
22x​=22π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22π​​+22πn​:4π​+πn
22π​​+22πn​
22π​​=4π​
22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=4π​+πn
x=4π​+πn
x=4π​+πn
x=4π​+πn
x=4π​+πn
Combine all the solutionsx=4π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

8sin^2(x)2cos(x)=7,0<= x<= 2pi2sin^2(x)-sin(x)+3=49cos(2x)=9cos^2(x)-42-cos(x)=0sin(1/x)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for sqrt(cos^2(2x)+1)+sin(2x)=2 ?

    The general solution for sqrt(cos^2(2x)+1)+sin(2x)=2 is x= pi/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024