Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-sin(2θ)-cos(4θ)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−sin(2θ)−cos(4θ)=0

Solution

θ=4π+4πn​,θ=127π+12πn​,θ=1211π+12πn​
+1
Degrees
θ=45∘+180∘n,θ=105∘+180∘n,θ=165∘+180∘n
Solution steps
−sin(2θ)−cos(4θ)=0
Let: u=2θ−sin(u)−cos(2u)=0
Rewrite using trig identities
−cos(2u)−sin(u)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=−(1−2sin2(u))−sin(u)
−(1−2sin2(u)):−1+2sin2(u)
−(1−2sin2(u))
Distribute parentheses=−(1)−(−2sin2(u))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+2sin2(u)
=−1+2sin2(u)−sin(u)
−1−sin(u)+2sin2(u)=0
Solve by substitution
−1−sin(u)+2sin2(u)=0
Let: sin(u)=u−1−u+2u2=0
−1−u+2u2=0:u=1,u=−21​
−1−u+2u2=0
Write in the standard form ax2+bx+c=02u2−u−1=0
Solve with the quadratic formula
2u2−u−1=0
Quadratic Equation Formula:
For a=2,b=−1,c=−1u1,2​=2⋅2−(−1)±(−1)2−4⋅2(−1)​​
u1,2​=2⋅2−(−1)±(−1)2−4⋅2(−1)​​
(−1)2−4⋅2(−1)​=3
(−1)2−4⋅2(−1)​
Apply rule −(−a)=a=(−1)2+4⋅2⋅1​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅2⋅1=8
4⋅2⋅1
Multiply the numbers: 4⋅2⋅1=8=8
=1+8​
Add the numbers: 1+8=9=9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
u1,2​=2⋅2−(−1)±3​
Separate the solutionsu1​=2⋅2−(−1)+3​,u2​=2⋅2−(−1)−3​
u=2⋅2−(−1)+3​:1
2⋅2−(−1)+3​
Apply rule −(−a)=a=2⋅21+3​
Add the numbers: 1+3=4=2⋅24​
Multiply the numbers: 2⋅2=4=44​
Apply rule aa​=1=1
u=2⋅2−(−1)−3​:−21​
2⋅2−(−1)−3​
Apply rule −(−a)=a=2⋅21−3​
Subtract the numbers: 1−3=−2=2⋅2−2​
Multiply the numbers: 2⋅2=4=4−2​
Apply the fraction rule: b−a​=−ba​=−42​
Cancel the common factor: 2=−21​
The solutions to the quadratic equation are:u=1,u=−21​
Substitute back u=sin(u)sin(u)=1,sin(u)=−21​
sin(u)=1,sin(u)=−21​
sin(u)=1:u=2π​+2πn
sin(u)=1
General solutions for sin(u)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=2π​+2πn
u=2π​+2πn
sin(u)=−21​:u=67π​+2πn,u=611π​+2πn
sin(u)=−21​
General solutions for sin(u)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=67π​+2πn,u=611π​+2πn
u=67π​+2πn,u=611π​+2πn
Combine all the solutionsu=2π​+2πn,u=67π​+2πn,u=611π​+2πn
Substitute back u=2θ
2θ=2π​+2πn:θ=4π+4πn​
2θ=2π​+2πn
Divide both sides by 2
2θ=2π​+2πn
Divide both sides by 222θ​=22π​​+22πn​
Simplify
22θ​=22π​​+22πn​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 22π​​+22πn​:4π+4πn​
22π​​+22πn​
Apply rule ca​±cb​=ca±b​=22π​+2πn​
Join 2π​+2πn:2π+4πn​
2π​+2πn
Convert element to fraction: 2πn=22πn2​=2π​+22πn⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π+2πn⋅2​
Multiply the numbers: 2⋅2=4=2π+4πn​
=22π+4πn​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π+4πn​
Multiply the numbers: 2⋅2=4=4π+4πn​
θ=4π+4πn​
θ=4π+4πn​
θ=4π+4πn​
2θ=67π​+2πn:θ=127π+12πn​
2θ=67π​+2πn
Divide both sides by 2
2θ=67π​+2πn
Divide both sides by 222θ​=267π​​+22πn​
Simplify
22θ​=267π​​+22πn​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 267π​​+22πn​:127π+12πn​
267π​​+22πn​
Apply rule ca​±cb​=ca±b​=267π​+2πn​
Join 67π​+2πn:67π+12πn​
67π​+2πn
Convert element to fraction: 2πn=62πn6​=67π​+62πn⋅6​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=67π+2πn⋅6​
Multiply the numbers: 2⋅6=12=67π+12πn​
=267π+12πn​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅27π+12πn​
Multiply the numbers: 6⋅2=12=127π+12πn​
θ=127π+12πn​
θ=127π+12πn​
θ=127π+12πn​
2θ=611π​+2πn:θ=1211π+12πn​
2θ=611π​+2πn
Divide both sides by 2
2θ=611π​+2πn
Divide both sides by 222θ​=2611π​​+22πn​
Simplify
22θ​=2611π​​+22πn​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2611π​​+22πn​:1211π+12πn​
2611π​​+22πn​
Apply rule ca​±cb​=ca±b​=2611π​+2πn​
Join 611π​+2πn:611π+12πn​
611π​+2πn
Convert element to fraction: 2πn=62πn6​=611π​+62πn⋅6​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=611π+2πn⋅6​
Multiply the numbers: 2⋅6=12=611π+12πn​
=2611π+12πn​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅211π+12πn​
Multiply the numbers: 6⋅2=12=1211π+12πn​
θ=1211π+12πn​
θ=1211π+12πn​
θ=1211π+12πn​
θ=4π+4πn​,θ=127π+12πn​,θ=1211π+12πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

5tan(θ)+9=03sin(θ)=sqrt(3)sin(θ)+3cos(θ)+3sin(θ)2sin^2(x)-3sin(x)=2tan(x+pi)+2sin(x+pi)=0,0<= x<= 2pisin(a)+sqrt(3)cos(a)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for -sin(2θ)-cos(4θ)=0 ?

    The general solution for -sin(2θ)-cos(4θ)=0 is θ=(pi+4pin)/4 ,θ=(7pi+12pin)/(12),θ=(11pi+12pin)/(12)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024