Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(cos^2(x)+1/2)+sqrt(sin^2(x)+1/2)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(x)+21​​+sin2(x)+21​​=2

Solution

x=4π​+2πn,x=43π​+2πn,x=45π​+2πn,x=47π​+2πn
+1
Degrees
x=45∘+360∘n,x=135∘+360∘n,x=225∘+360∘n,x=315∘+360∘n
Solution steps
cos2(x)+21​​+sin2(x)+21​​=2
Subtract 2 from both sides22cos2(x)+1​​+22sin2(x)+1​​−2=0
Rewrite using trig identities
−2+21+2cos2(x)​​+21+2sin2(x)​​
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−2+21+2(1−sin2(x))​​+21+2sin2(x)​​
Expand 1+2(1−sin2(x)):−2sin2(x)+3
1+2(1−sin2(x))
Expand 2(1−sin2(x)):2−2sin2(x)
2(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=sin2(x)=2⋅1−2sin2(x)
Multiply the numbers: 2⋅1=2=2−2sin2(x)
=1+2−2sin2(x)
Add the numbers: 1+2=3=−2sin2(x)+3
=−2+2−2sin2(x)+3​​+21+2sin2(x)​​
−2+21+2sin2(x)​​+23−2sin2(x)​​=0
Solve by substitution
−2+21+2sin2(x)​​+23−2sin2(x)​​=0
Let: sin(x)=u−2+21+2u2​​+23−2u2​​=0
−2+21+2u2​​+23−2u2​​=0:u=21​​,u=−21​​
−2+21+2u2​​+23−2u2​​=0
Remove square roots
−2+21+2u2​​+23−2u2​​=0
Add 2 to both sides−2+21+2u2​​+23−2u2​​+2=0+2
Simplify21+2u2​​+23−2u2​​=2
Subtract 23−2u2​​ from both sides21+2u2​​+23−2u2​​−23−2u2​​=2−23−2u2​​
Simplify21+2u2​​=2−23−2u2​​
Square both sides:21+2u2​=4−423−2u2​​+23−2u2​
−2+21+2u2​​+23−2u2​​=0
(21+2u2​​)2=(2−23−2u2​​)2
Expand (21+2u2​​)2:21+2u2​
(21+2u2​​)2
Apply radical rule: a​=a21​=((21+2u2​)21​)2
Apply exponent rule: (ab)c=abc=(21+2u2​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+2u2​
Expand (2−23−2u2​​)2:4−423−2u2​​+23−2u2​
(2−23−2u2​​)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=2,b=23−2u2​​
=22−2⋅223−2u2​​+(23−2u2​​)2
Simplify 22−2⋅223−2u2​​+(23−2u2​​)2:4−423−2u2​​+23−2u2​
22−2⋅223−2u2​​+(23−2u2​​)2
22=4
22
22=4=4
2⋅223−2u2​​=423−2u2​​
2⋅223−2u2​​
Multiply the numbers: 2⋅2=4=423−2u2​​
(23−2u2​​)2=23−2u2​
(23−2u2​​)2
Apply radical rule: a​=a21​=((23−2u2​)21​)2
Apply exponent rule: (ab)c=abc=(23−2u2​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=23−2u2​
=4−423−2u2​​+23−2u2​
=4−423−2u2​​+23−2u2​
21+2u2​=4−423−2u2​​+23−2u2​
21+2u2​=4−423−2u2​​+23−2u2​
Subtract 23−2u2​ from both sides21+2u2​−23−2u2​=4−423−2u2​​+23−2u2​−23−2u2​
Simplify21+2u2​−23−2u2​=4−423−2u2​​
Subtract 4 from both sides21+2u2​−23−2u2​−4=4−423−2u2​​−4
Simplify21+2u2​−23−2u2​−4=−423−2u2​​
Square both sides:4u4−20u2+25=8(−2u2+3)
21+2u2​=4−423−2u2​​+23−2u2​
(21+2u2​−23−2u2​−4)2=(−423−2u2​​)2
Expand (21+2u2​−23−2u2​−4)2:4u4−20u2+25
(21+2u2​−23−2u2​−4)2
Combine the fractions 22u2+1​−2−2u2+3​:21+2u2−(3−2u2)​
Apply rule ca​±cb​=ca±b​=21+2u2−(−2u2+3)​
=(22u2−(−2u2+3)+1​−4)2
21+2u2−(3−2u2)​=2u2−1
21+2u2−(3−2u2)​
Expand 1+2u2−(3−2u2):4u2−2
1+2u2−(3−2u2)
−(3−2u2):−3+2u2
−(3−2u2)
Distribute parentheses=−(3)−(−2u2)
Apply minus-plus rules−(−a)=a,−(a)=−a=−3+2u2
=1+2u2−3+2u2
Simplify 1+2u2−3+2u2:4u2−2
1+2u2−3+2u2
Group like terms=2u2+2u2+1−3
Add similar elements: 2u2+2u2=4u2=4u2+1−3
Add/Subtract the numbers: 1−3=−2=4u2−2
=4u2−2
=24u2−2​
Factor 4u2−2:2(2u2−1)
4u2−2
Rewrite as=2⋅2u2−2⋅1
Factor out common term 2=2(2u2−1)
=22(2u2−1)​
Divide the numbers: 22​=1=2u2−1
=(2u2−1−4)2
Subtract the numbers: −1−4=−5=(2u2−5)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=2u2,b=5
=(2u2)2−2⋅2u2⋅5+52
Simplify (2u2)2−2⋅2u2⋅5+52:4u4−20u2+25
(2u2)2−2⋅2u2⋅5+52
(2u2)2=4u4
(2u2)2
Apply exponent rule: (a⋅b)n=anbn=22(u2)2
(u2)2:u4
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
=22u4
22=4=4u4
2⋅2u2⋅5=20u2
2⋅2u2⋅5
Multiply the numbers: 2⋅2⋅5=20=20u2
52=25
52
52=25=25
=4u4−20u2+25
=4u4−20u2+25
Expand (−423−2u2​​)2:8(−2u2+3)
(−423−2u2​​)2
Apply exponent rule: (−a)n=an,if n is even(−423−2u2​​)2=(423−2u2​​)2=(423−2u2​​)2
Apply exponent rule: (a⋅b)n=anbn=42(23−2u2​​)2
(23−2u2​​)2:23−2u2​
Apply radical rule: a​=a21​=((23−2u2​)21​)2
Apply exponent rule: (ab)c=abc=(23−2u2​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=23−2u2​
=4223−2u2​
42=16=1623−2u2​
Refine=8(−2u2+3)
4u4−20u2+25=8(−2u2+3)
4u4−20u2+25=8(−2u2+3)
4u4−20u2+25=8(−2u2+3)
Solve 4u4−20u2+25=8(−2u2+3):u=21​​,u=−21​​
4u4−20u2+25=8(−2u2+3)
Expand 8(−2u2+3):−16u2+24
8(−2u2+3)
Apply the distributive law: a(b+c)=ab+aca=8,b=−2u2,c=3=8(−2u2)+8⋅3
Apply minus-plus rules+(−a)=−a=−8⋅2u2+8⋅3
Simplify −8⋅2u2+8⋅3:−16u2+24
−8⋅2u2+8⋅3
Multiply the numbers: 8⋅2=16=−16u2+8⋅3
Multiply the numbers: 8⋅3=24=−16u2+24
=−16u2+24
4u4−20u2+25=−16u2+24
Move 24to the left side
4u4−20u2+25=−16u2+24
Subtract 24 from both sides4u4−20u2+25−24=−16u2+24−24
Simplify4u4−20u2+1=−16u2
4u4−20u2+1=−16u2
Move 16u2to the left side
4u4−20u2+1=−16u2
Add 16u2 to both sides4u4−20u2+1+16u2=−16u2+16u2
Simplify4u4−4u2+1=0
4u4−4u2+1=0
Rewrite the equation with v=u2 and v2=u44v2−4v+1=0
Solve 4v2−4v+1=0:v=21​
4v2−4v+1=0
Solve with the quadratic formula
4v2−4v+1=0
Quadratic Equation Formula:
For a=4,b=−4,c=1v1,2​=2⋅4−(−4)±(−4)2−4⋅4⋅1​​
v1,2​=2⋅4−(−4)±(−4)2−4⋅4⋅1​​
(−4)2−4⋅4⋅1=0
(−4)2−4⋅4⋅1
Apply exponent rule: (−a)n=an,if n is even(−4)2=42=42−4⋅4⋅1
Multiply the numbers: 4⋅4⋅1=16=42−16
42=16=16−16
Subtract the numbers: 16−16=0=0
v1,2​=2⋅4−(−4)±0​​
v=2⋅4−(−4)​
2⋅4−(−4)​=21​
2⋅4−(−4)​
Apply rule −(−a)=a=2⋅44​
Multiply the numbers: 2⋅4=8=84​
Cancel the common factor: 4=21​
v=21​
The solution to the quadratic equation is:v=21​
v=21​
Substitute back v=u2,solve for u
Solve u2=21​:u=21​​,u=−21​​
u2=21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21​​,u=−21​​
The solutions are
u=21​​,u=−21​​
u=21​​,u=−21​​
Verify Solutions:u=21​​True,u=−21​​True
Check the solutions by plugging them into −2+21+2u2​​+23−2u2​​=0
Remove the ones that don't agree with the equation.
Plug in u=21​​:True
−2+21+2(21​​)2​​+23−2(21​​)2​​=0
−2+21+2(21​​)2​​+23−2(21​​)2​​=0
−2+21+2(21​​)2​​+23−2(21​​)2​​
21+2(21​​)2​​=1
21+2(21​​)2​​
21+2(21​​)2​=1
21+2(21​​)2​
2(21​​)2=1
2(21​​)2
(21​​)2=21​
(21​​)2
Apply radical rule: a​=a21​=((21​)21​)2
Apply exponent rule: (ab)c=abc=(21​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21​
=2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1​
Add the numbers: 1+1=2=22​
Apply rule aa​=1=1
=1​
Apply rule 1​=1=1
23−2(21​​)2​​=1
23−2(21​​)2​​
23−2(21​​)2​=1
23−2(21​​)2​
2(21​​)2=1
2(21​​)2
(21​​)2=21​
(21​​)2
Apply radical rule: a​=a21​=((21​)21​)2
Apply exponent rule: (ab)c=abc=(21​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21​
=2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=23−1​
Subtract the numbers: 3−1=2=22​
Apply rule aa​=1=1
=1​
Apply rule 1​=1=1
=−2+1+1
Add/Subtract the numbers: −2+1+1=0=0
0=0
True
Plug in u=−21​​:True
−2+21+2(−21​​)2​​+23−2(−21​​)2​​=0
−2+21+2(−21​​)2​​+23−2(−21​​)2​​=0
−2+21+2(−21​​)2​​+23−2(−21​​)2​​
21+2(−21​​)2​​=1
21+2(−21​​)2​​
21+2(−21​​)2​=1
21+2(−21​​)2​
1+2(−21​​)2=1+2(21​​)2
1+2(−21​​)2
(−21​​)2=(21​​)2
(−21​​)2
Apply exponent rule: (−a)n=an,if n is even(−21​​)2=(21​​)2=(21​​)2
=1+2(21​​)2
=21+2(21​​)2​
2(21​​)2=1
2(21​​)2
(21​​)2=21​
(21​​)2
Apply radical rule: a​=a21​=((21​)21​)2
Apply exponent rule: (ab)c=abc=(21​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21​
=2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1​
Add the numbers: 1+1=2=22​
Apply rule aa​=1=1
=1​
Apply rule 1​=1=1
23−2(−21​​)2​​=1
23−2(−21​​)2​​
23−2(−21​​)2​=1
23−2(−21​​)2​
3−2(−21​​)2=3−2(21​​)2
3−2(−21​​)2
(−21​​)2=(21​​)2
(−21​​)2
Apply exponent rule: (−a)n=an,if n is even(−21​​)2=(21​​)2=(21​​)2
=3−2(21​​)2
=23−2(21​​)2​
2(21​​)2=1
2(21​​)2
(21​​)2=21​
(21​​)2
Apply radical rule: a​=a21​=((21​)21​)2
Apply exponent rule: (ab)c=abc=(21​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21​
=2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=23−1​
Subtract the numbers: 3−1=2=22​
Apply rule aa​=1=1
=1​
Apply rule 1​=1=1
=−2+1+1
Add/Subtract the numbers: −2+1+1=0=0
0=0
True
The solutions areu=21​​,u=−21​​
Substitute back u=sin(x)sin(x)=21​​,sin(x)=−21​​
sin(x)=21​​,sin(x)=−21​​
sin(x)=21​​:x=4π​+2πn,x=43π​+2πn
sin(x)=21​​
General solutions for sin(x)=21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=4π​+2πn,x=43π​+2πn
x=4π​+2πn,x=43π​+2πn
sin(x)=−21​​:x=45π​+2πn,x=47π​+2πn
sin(x)=−21​​
General solutions for sin(x)=−21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=45π​+2πn,x=47π​+2πn
x=45π​+2πn,x=47π​+2πn
Combine all the solutionsx=4π​+2πn,x=43π​+2πn,x=45π​+2πn,x=47π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(x)-2cos(x)-2=01/2 tan^2(x)=1-sec(x)sin(2x)=sin^2(x)2sec^2(x)+3(1/(cos(x)))=2cot^2(θ)-3=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024