Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(a)+1=2sqrt(1-sin^2(a))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(a)+1=21−sin2(a)​

Solution

a=0.64350…+2πn,a=π−0.64350…+2πn,a=23π​+2πn
+1
Degrees
a=36.86989…∘+360∘n,a=143.13010…∘+360∘n,a=270∘+360∘n
Solution steps
sin(a)+1=21−sin2(a)​
Solve by substitution
sin(a)+1=21−sin2(a)​
Let: sin(a)=uu+1=21−u2​
u+1=21−u2​:u=53​,u=−1
u+1=21−u2​
Square both sides:u2+2u+1=4−4u2
u+1=21−u2​
(u+1)2=(21−u2​)2
Expand (u+1)2:u2+2u+1
(u+1)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u,b=1
=u2+2u⋅1+12
Simplify u2+2u⋅1+12:u2+2u+1
u2+2u⋅1+12
Apply rule 1a=112=1=u2+2⋅1⋅u+1
Multiply the numbers: 2⋅1=2=u2+2u+1
=u2+2u+1
Expand (21−u2​)2:4−4u2
(21−u2​)2
Apply exponent rule: (a⋅b)n=anbn=22(1−u2​)2
(1−u2​)2:1−u2
Apply radical rule: a​=a21​=((1−u2)21​)2
Apply exponent rule: (ab)c=abc=(1−u2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−u2
=22(1−u2)
22=4=4(1−u2)
Expand 4(1−u2):4−4u2
4(1−u2)
Apply the distributive law: a(b−c)=ab−aca=4,b=1,c=u2=4⋅1−4u2
Multiply the numbers: 4⋅1=4=4−4u2
=4−4u2
u2+2u+1=4−4u2
u2+2u+1=4−4u2
Solve u2+2u+1=4−4u2:u=53​,u=−1
u2+2u+1=4−4u2
Move 4u2to the left side
u2+2u+1=4−4u2
Add 4u2 to both sidesu2+2u+1+4u2=4−4u2+4u2
Simplify5u2+2u+1=4
5u2+2u+1=4
Move 4to the left side
5u2+2u+1=4
Subtract 4 from both sides5u2+2u+1−4=4−4
Simplify5u2+2u−3=0
5u2+2u−3=0
Solve with the quadratic formula
5u2+2u−3=0
Quadratic Equation Formula:
For a=5,b=2,c=−3u1,2​=2⋅5−2±22−4⋅5(−3)​​
u1,2​=2⋅5−2±22−4⋅5(−3)​​
22−4⋅5(−3)​=8
22−4⋅5(−3)​
Apply rule −(−a)=a=22+4⋅5⋅3​
Multiply the numbers: 4⋅5⋅3=60=22+60​
22=4=4+60​
Add the numbers: 4+60=64=64​
Factor the number: 64=82=82​
Apply radical rule: 82​=8=8
u1,2​=2⋅5−2±8​
Separate the solutionsu1​=2⋅5−2+8​,u2​=2⋅5−2−8​
u=2⋅5−2+8​:53​
2⋅5−2+8​
Add/Subtract the numbers: −2+8=6=2⋅56​
Multiply the numbers: 2⋅5=10=106​
Cancel the common factor: 2=53​
u=2⋅5−2−8​:−1
2⋅5−2−8​
Subtract the numbers: −2−8=−10=2⋅5−10​
Multiply the numbers: 2⋅5=10=10−10​
Apply the fraction rule: b−a​=−ba​=−1010​
Apply rule aa​=1=−1
The solutions to the quadratic equation are:u=53​,u=−1
u=53​,u=−1
Verify Solutions:u=53​True,u=−1True
Check the solutions by plugging them into u+1=21−u2​
Remove the ones that don't agree with the equation.
Plug in u=53​:True
(53​)+1=21−(53​)2​
(53​)+1=58​
(53​)+1
Remove parentheses: (a)=a=53​+1
Convert element to fraction: 1=51⋅5​=51⋅5​+53​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=51⋅5+3​
1⋅5+3=8
1⋅5+3
Multiply the numbers: 1⋅5=5=5+3
Add the numbers: 5+3=8=8
=58​
21−(53​)2​=58​
21−(53​)2​
1−(53​)2​=54​
1−(53​)2​
(53​)2=259​
(53​)2
Apply exponent rule: (ba​)c=bcac​=5232​
32=9=529​
52=25=259​
=1−259​​
Join 1−259​:2516​
1−259​
Convert element to fraction: 1=251⋅25​=251⋅25​−259​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=251⋅25−9​
1⋅25−9=16
1⋅25−9
Multiply the numbers: 1⋅25=25=25−9
Subtract the numbers: 25−9=16=16
=2516​
=2516​​
Apply radical rule: assuming a≥0,b≥0=25​16​​
25​=5
25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
=516​​
16​=4
16​
Factor the number: 16=42=42​
Apply radical rule: 42​=4=4
=54​
=2⋅54​
Multiply fractions: a⋅cb​=ca⋅b​=54⋅2​
Multiply the numbers: 4⋅2=8=58​
58​=58​
True
Plug in u=−1:True
(−1)+1=21−(−1)2​
(−1)+1=0
(−1)+1
Remove parentheses: (−a)=−a=−1+1
Add/Subtract the numbers: −1+1=0=0
21−(−1)2​=0
21−(−1)2​
1−(−1)2​=0
1−(−1)2​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
=1−1​
Subtract the numbers: 1−1=0=0​
Apply rule 0​=0=0
=2⋅0
Apply rule 0⋅a=0=0
0=0
True
The solutions areu=53​,u=−1
Substitute back u=sin(a)sin(a)=53​,sin(a)=−1
sin(a)=53​,sin(a)=−1
sin(a)=53​:a=arcsin(53​)+2πn,a=π−arcsin(53​)+2πn
sin(a)=53​
Apply trig inverse properties
sin(a)=53​
General solutions for sin(a)=53​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πna=arcsin(53​)+2πn,a=π−arcsin(53​)+2πn
a=arcsin(53​)+2πn,a=π−arcsin(53​)+2πn
sin(a)=−1:a=23π​+2πn
sin(a)=−1
General solutions for sin(a)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=23π​+2πn
a=23π​+2πn
Combine all the solutionsa=arcsin(53​)+2πn,a=π−arcsin(53​)+2πn,a=23π​+2πn
Show solutions in decimal forma=0.64350…+2πn,a=π−0.64350…+2πn,a=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4cos(x)-3=0cos(θ)cos(2θ)+sin(θ)sin(2θ)= 1/28sin(x)tan(x)+tan(x)=0sin(x)-3=cos(x)-3sin(x)+4csc(x)+5=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024