Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot(x)+6sin(x)-2cos(x)=3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot(x)+6sin(x)−2cos(x)=3

Solution

x=6π​+2πn,x=65π​+2πn,x=0.32175…+πn
+1
Degrees
x=30∘+360∘n,x=150∘+360∘n,x=18.43494…∘+180∘n
Solution steps
cot(x)+6sin(x)−2cos(x)=3
Subtract 3 from both sidescot(x)+6sin(x)−2cos(x)−3=0
Express with sin, cos
−3+cot(x)−2cos(x)+6sin(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−3+sin(x)cos(x)​−2cos(x)+6sin(x)
Simplify −3+sin(x)cos(x)​−2cos(x)+6sin(x):sin(x)−3sin(x)+cos(x)−2cos(x)sin(x)+6sin2(x)​
−3+sin(x)cos(x)​−2cos(x)+6sin(x)
Convert element to fraction: 3=sin(x)3sin(x)​,2cos(x)=sin(x)2cos(x)sin(x)​,6sin(x)=sin(x)6sin(x)sin(x)​=−sin(x)3sin(x)​+sin(x)cos(x)​−sin(x)2cos(x)sin(x)​+sin(x)6sin(x)sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)−3sin(x)+cos(x)−2cos(x)sin(x)+6sin(x)sin(x)​
−3sin(x)+cos(x)−2cos(x)sin(x)+6sin(x)sin(x)=−3sin(x)+cos(x)−2cos(x)sin(x)+6sin2(x)
−3sin(x)+cos(x)−2cos(x)sin(x)+6sin(x)sin(x)
6sin(x)sin(x)=6sin2(x)
6sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=6sin1+1(x)
Add the numbers: 1+1=2=6sin2(x)
=−3sin(x)+cos(x)−2cos(x)sin(x)+6sin2(x)
=sin(x)−3sin(x)+cos(x)−2cos(x)sin(x)+6sin2(x)​
=sin(x)−3sin(x)+cos(x)−2cos(x)sin(x)+6sin2(x)​
sin(x)cos(x)−3sin(x)+6sin2(x)−2cos(x)sin(x)​=0
g(x)f(x)​=0⇒f(x)=0cos(x)−3sin(x)+6sin2(x)−2cos(x)sin(x)=0
Factor cos(x)−3sin(x)+6sin2(x)−2cos(x)sin(x):(1−2sin(x))(cos(x)−3sin(x))
cos(x)−3sin(x)+6sin2(x)−2cos(x)sin(x)
Factor out common term cos(x)=cos(x)(1−2sin(x))−3sin(x)+6sin2(x)
Apply exponent rule: ab+c=abacsin2(x)=sin(x)sin(x)=cos(x)(1−2sin(x))−3sin(x)+6sin(x)sin(x)
Rewrite as=cos(x)(1−2sin(x))−1⋅3sin(x)+2⋅3sin(x)sin(x)
Factor out common term 3sin(x)=cos(x)(1−2sin(x))+3sin(x)(−1+2sin(x))
Rewrite as=(1−2sin(x))cos(x)−3(1−2sin(x))sin(x)
Factor out common term (1−2sin(x))=(1−2sin(x))(cos(x)−3sin(x))
(1−2sin(x))(cos(x)−3sin(x))=0
Solving each part separately1−2sin(x)=0orcos(x)−3sin(x)=0
1−2sin(x)=0:x=6π​+2πn,x=65π​+2πn
1−2sin(x)=0
Move 1to the right side
1−2sin(x)=0
Subtract 1 from both sides1−2sin(x)−1=0−1
Simplify−2sin(x)=−1
−2sin(x)=−1
Divide both sides by −2
−2sin(x)=−1
Divide both sides by −2−2−2sin(x)​=−2−1​
Simplifysin(x)=21​
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
cos(x)−3sin(x)=0:x=arctan(31​)+πn
cos(x)−3sin(x)=0
Rewrite using trig identities
cos(x)−3sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)−3sin(x)​=cos(x)0​
Simplify1−cos(x)3sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1−3tan(x)=0
1−3tan(x)=0
Move 1to the right side
1−3tan(x)=0
Subtract 1 from both sides1−3tan(x)−1=0−1
Simplify−3tan(x)=−1
−3tan(x)=−1
Divide both sides by −3
−3tan(x)=−1
Divide both sides by −3−3−3tan(x)​=−3−1​
Simplifytan(x)=31​
tan(x)=31​
Apply trig inverse properties
tan(x)=31​
General solutions for tan(x)=31​tan(x)=a⇒x=arctan(a)+πnx=arctan(31​)+πn
x=arctan(31​)+πn
Combine all the solutionsx=6π​+2πn,x=65π​+2πn,x=arctan(31​)+πn
Show solutions in decimal formx=6π​+2πn,x=65π​+2πn,x=0.32175…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2θ)=cos^2(θ)cos(a)= 12/13picos(pix)=02sin^2(x)-cos(x)=22tan(x)sin(x)-2tan(x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for cot(x)+6sin(x)-2cos(x)=3 ?

    The general solution for cot(x)+6sin(x)-2cos(x)=3 is x= pi/6+2pin,x=(5pi)/6+2pin,x=0.32175…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024