Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(2tan(3x))/(1-tan^2(3x))=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−tan2(3x)2tan(3x)​=1

Solution

x=−31.17809…​+3πn​,x=30.39269…​+3πn​
+1
Degrees
x=−22.5∘+60∘n,x=7.5∘+60∘n
Solution steps
1−tan2(3x)2tan(3x)​=1
Solve by substitution
1−tan2(3x)2tan(3x)​=1
Let: tan(3x)=u1−u22u​=1
1−u22u​=1:u=−1−2​,u=2​−1
1−u22u​=1
Multiply both sides by 1−u2
1−u22u​=1
Multiply both sides by 1−u21−u22u​(1−u2)=1⋅(1−u2)
Simplify
1−u22u​(1−u2)=1⋅(1−u2)
Simplify 1−u22u​(1−u2):2u
1−u22u​(1−u2)
Multiply fractions: a⋅cb​=ca⋅b​=1−u22u(1−u2)​
Cancel the common factor: 1−u2=2u
Simplify 1⋅(1−u2):1−u2
1⋅(1−u2)
Multiply: 1⋅(1−u2)=(1−u2)=(1−u2)
Remove parentheses: (a)=a=1−u2
2u=1−u2
2u=1−u2
2u=1−u2
Solve 2u=1−u2:u=−1−2​,u=2​−1
2u=1−u2
Switch sides1−u2=2u
Move 2uto the left side
1−u2=2u
Subtract 2u from both sides1−u2−2u=2u−2u
Simplify1−u2−2u=0
1−u2−2u=0
Write in the standard form ax2+bx+c=0−u2−2u+1=0
Solve with the quadratic formula
−u2−2u+1=0
Quadratic Equation Formula:
For a=−1,b=−2,c=1u1,2​=2(−1)−(−2)±(−2)2−4(−1)⋅1​​
u1,2​=2(−1)−(−2)±(−2)2−4(−1)⋅1​​
(−2)2−4(−1)⋅1​=22​
(−2)2−4(−1)⋅1​
Apply rule −(−a)=a=(−2)2+4⋅1⋅1​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=22+4​
22=4=4+4​
Add the numbers: 4+4=8=8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
u1,2​=2(−1)−(−2)±22​​
Separate the solutionsu1​=2(−1)−(−2)+22​​,u2​=2(−1)−(−2)−22​​
u=2(−1)−(−2)+22​​:−1−2​
2(−1)−(−2)+22​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅12+22​​
Multiply the numbers: 2⋅1=2=−22+22​​
Apply the fraction rule: −ba​=−ba​=−22+22​​
Cancel 22+22​​:1+2​
22+22​​
Factor 2+22​:2(1+2​)
2+22​
Rewrite as=2⋅1+22​
Factor out common term 2=2(1+2​)
=22(1+2​)​
Divide the numbers: 22​=1=1+2​
=−(1+2​)
Distribute parentheses=−(1)−(2​)
Apply minus-plus rules+(−a)=−a=−1−2​
u=2(−1)−(−2)−22​​:2​−1
2(−1)−(−2)−22​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅12−22​​
Multiply the numbers: 2⋅1=2=−22−22​​
Apply the fraction rule: −b−a​=ba​2−22​=−(22​−2)=222​−2​
Factor 22​−2:2(2​−1)
22​−2
Rewrite as=22​−2⋅1
Factor out common term 2=2(2​−1)
=22(2​−1)​
Divide the numbers: 22​=1=2​−1
The solutions to the quadratic equation are:u=−1−2​,u=2​−1
u=−1−2​,u=2​−1
Verify Solutions
Find undefined (singularity) points:u=1,u=−1
Take the denominator(s) of 1−u22u​ and compare to zero
Solve 1−u2=0:u=1,u=−1
1−u2=0
Move 1to the right side
1−u2=0
Subtract 1 from both sides1−u2−1=0−1
Simplify−u2=−1
−u2=−1
Divide both sides by −1
−u2=−1
Divide both sides by −1−1−u2​=−1−1​
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply radical rule: 1​=1=1
−1​=−1
−1​
Apply radical rule: 1​=11​=1=−1
u=1,u=−1
The following points are undefinedu=1,u=−1
Combine undefined points with solutions:
u=−1−2​,u=2​−1
Substitute back u=tan(3x)tan(3x)=−1−2​,tan(3x)=2​−1
tan(3x)=−1−2​,tan(3x)=2​−1
tan(3x)=−1−2​:x=−3arctan(1+2​)​+3πn​
tan(3x)=−1−2​
Apply trig inverse properties
tan(3x)=−1−2​
General solutions for tan(3x)=−1−2​tan(x)=−a⇒x=arctan(−a)+πn3x=arctan(−1−2​)+πn
3x=arctan(−1−2​)+πn
Solve 3x=arctan(−1−2​)+πn:x=−3arctan(1+2​)​+3πn​
3x=arctan(−1−2​)+πn
Simplify arctan(−1−2​)+πn:−arctan(1+2​)+πn
arctan(−1−2​)+πn
Use the following property: arctan(−x)=−arctan(x)arctan(−1−2​)=−arctan(1+2​)=−arctan(1+2​)+πn
3x=−arctan(1+2​)+πn
Divide both sides by 3
3x=−arctan(1+2​)+πn
Divide both sides by 333x​=−3arctan(1+2​)​+3πn​
Simplifyx=−3arctan(1+2​)​+3πn​
x=−3arctan(1+2​)​+3πn​
x=−3arctan(1+2​)​+3πn​
tan(3x)=2​−1:x=3arctan(2​−1)​+3πn​
tan(3x)=2​−1
Apply trig inverse properties
tan(3x)=2​−1
General solutions for tan(3x)=2​−1tan(x)=a⇒x=arctan(a)+πn3x=arctan(2​−1)+πn
3x=arctan(2​−1)+πn
Solve 3x=arctan(2​−1)+πn:x=3arctan(2​−1)​+3πn​
3x=arctan(2​−1)+πn
Divide both sides by 3
3x=arctan(2​−1)+πn
Divide both sides by 333x​=3arctan(2​−1)​+3πn​
Simplifyx=3arctan(2​−1)​+3πn​
x=3arctan(2​−1)​+3πn​
x=3arctan(2​−1)​+3πn​
Combine all the solutionsx=−3arctan(1+2​)​+3πn​,x=3arctan(2​−1)​+3πn​
Show solutions in decimal formx=−31.17809…​+3πn​,x=30.39269…​+3πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=(sqrt(3))/3cos(2θ)=-1/2 ,0<= θ<2pitan(x)tan(2x)=12sin^2(x)+7sin(x)=42sqrt(2)cos(θ)+4=6
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024