Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

20cos^6(x)-57cos^4(x)+27cos^2(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

20cos6(x)−57cos4(x)+27cos2(x)=0

Solution

x=2π​+2πn,x=23π​+2πn,x=0.68471…+2πn,x=2π−0.68471…+2πn,x=2.45687…+2πn,x=−2.45687…+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n,x=39.23152…∘+360∘n,x=320.76847…∘+360∘n,x=140.76847…∘+360∘n,x=−140.76847…∘+360∘n
Solution steps
20cos6(x)−57cos4(x)+27cos2(x)=0
Solve by substitution
20cos6(x)−57cos4(x)+27cos2(x)=0
Let: cos(x)=u20u6−57u4+27u2=0
20u6−57u4+27u2=0:u=0,u=53​​,u=−53​​,u=23​,u=−23​
20u6−57u4+27u2=0
Rewrite the equation with v=u2,v2=u4 and v3=u620v3−57v2+27v=0
Solve 20v3−57v2+27v=0:v=0,v=53​,v=49​
20v3−57v2+27v=0
Factor 20v3−57v2+27v:v(5v−3)(4v−9)
20v3−57v2+27v
Factor out common term v:v(20v2−57v+27)
20v3−57v2+27v
Apply exponent rule: ab+c=abacv2=vv=20v2v−57vv+27v
Factor out common term v=v(20v2−57v+27)
=v(20v2−57v+27)
Factor 20v2−57v+27:(5v−3)(4v−9)
20v2−57v+27
Break the expression into groups
20v2−57v+27
Definition
Factors of 540:1,2,3,4,5,6,9,10,12,15,18,20,27,30,36,45,54,60,90,108,135,180,270,540
540
Divisors (Factors)
Find the Prime factors of 540:2,2,3,3,3,5
540
540divides by 2540=270⋅2=2⋅270
270divides by 2270=135⋅2=2⋅2⋅135
135divides by 3135=45⋅3=2⋅2⋅3⋅45
45divides by 345=15⋅3=2⋅2⋅3⋅3⋅15
15divides by 315=5⋅3=2⋅2⋅3⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3⋅3⋅5
Multiply the prime factors of 540:4,6,12,9,18,36,27,54,108,10,20,15,30,60,45,90,180,135,270
2⋅2=42⋅3=6
4,6,12,9,18,36,27,54,108,10,20,15,30,60,45,90,180,135,270
4,6,12,9,18,36,27,54,108,10,20,15,30,60,45,90,180,135,270
Add the prime factors: 2,3,5
Add 1 and the number 540 itself1,540
The factors of 5401,2,3,4,5,6,9,10,12,15,18,20,27,30,36,45,54,60,90,108,135,180,270,540
Negative factors of 540:−1,−2,−3,−4,−5,−6,−9,−10,−12,−15,−18,−20,−27,−30,−36,−45,−54,−60,−90,−108,−135,−180,−270,−540
Multiply the factors by −1 to get the negative factors−1,−2,−3,−4,−5,−6,−9,−10,−12,−15,−18,−20,−27,−30,−36,−45,−54,−60,−90,−108,−135,−180,−270,−540
For every two factors such that u∗v=540,check if u+v=−57
Check u=1,v=540:u∗v=540,u+v=541⇒FalseCheck u=2,v=270:u∗v=540,u+v=272⇒False
u=−12,v=−45
Group into (ax2+ux)+(vx+c)(20v2−12v)+(−45v+27)
=(20v2−12v)+(−45v+27)
Factor out 4vfrom 20v2−12v:4v(5v−3)
20v2−12v
Apply exponent rule: ab+c=abacv2=vv=20vv−12v
Rewrite 12 as 4⋅3Rewrite 20 as 4⋅5=4⋅5vv−4⋅3v
Factor out common term 4v=4v(5v−3)
Factor out −9from −45v+27:−9(5v−3)
−45v+27
Rewrite 27 as 9⋅3Rewrite 45 as 9⋅5=−9⋅5v+9⋅3
Factor out common term −9=−9(5v−3)
=4v(5v−3)−9(5v−3)
Factor out common term 5v−3=(5v−3)(4v−9)
=v(5v−3)(4v−9)
v(5v−3)(4v−9)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0v=0or5v−3=0or4v−9=0
Solve 5v−3=0:v=53​
5v−3=0
Move 3to the right side
5v−3=0
Add 3 to both sides5v−3+3=0+3
Simplify5v=3
5v=3
Divide both sides by 5
5v=3
Divide both sides by 555v​=53​
Simplifyv=53​
v=53​
Solve 4v−9=0:v=49​
4v−9=0
Move 9to the right side
4v−9=0
Add 9 to both sides4v−9+9=0+9
Simplify4v=9
4v=9
Divide both sides by 4
4v=9
Divide both sides by 444v​=49​
Simplifyv=49​
v=49​
The solutions arev=0,v=53​,v=49​
v=0,v=53​,v=49​
Substitute back v=u2,solve for u
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
Solve u2=53​:u=53​​,u=−53​​
u2=53​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=53​​,u=−53​​
Solve u2=49​:u=23​,u=−23​
u2=49​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=49​​,u=−49​​
49​​=23​
49​​
Apply radical rule: assuming a≥0,b≥0=4​9​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=29​​
9​=3
9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
=23​
−49​​=−23​
−49​​
Simplify 49​​:23​
49​​
Apply radical rule: assuming a≥0,b≥0=4​9​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=29​​
9​=3
9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
=23​
=−23​
u=23​,u=−23​
The solutions are
u=0,u=53​​,u=−53​​,u=23​,u=−23​
Substitute back u=cos(x)cos(x)=0,cos(x)=53​​,cos(x)=−53​​,cos(x)=23​,cos(x)=−23​
cos(x)=0,cos(x)=53​​,cos(x)=−53​​,cos(x)=23​,cos(x)=−23​
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=53​​:x=arccos(53​​)+2πn,x=2π−arccos(53​​)+2πn
cos(x)=53​​
Apply trig inverse properties
cos(x)=53​​
General solutions for cos(x)=53​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(53​​)+2πn,x=2π−arccos(53​​)+2πn
x=arccos(53​​)+2πn,x=2π−arccos(53​​)+2πn
cos(x)=−53​​:x=arccos(−53​​)+2πn,x=−arccos(−53​​)+2πn
cos(x)=−53​​
Apply trig inverse properties
cos(x)=−53​​
General solutions for cos(x)=−53​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−53​​)+2πn,x=−arccos(−53​​)+2πn
x=arccos(−53​​)+2πn,x=−arccos(−53​​)+2πn
cos(x)=23​:No Solution
cos(x)=23​
−1≤cos(x)≤1NoSolution
cos(x)=−23​:No Solution
cos(x)=−23​
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=arccos(53​​)+2πn,x=2π−arccos(53​​)+2πn,x=arccos(−53​​)+2πn,x=−arccos(−53​​)+2πn
Show solutions in decimal formx=2π​+2πn,x=23π​+2πn,x=0.68471…+2πn,x=2π−0.68471…+2πn,x=2.45687…+2πn,x=−2.45687…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin^2(w)-3sin(w)+1=02+sin(x)=5sin(x)2cos(θ)+5=0sin(x)cos(x)=cos(x)2cos(2θ)+1=0,0<= θ<= 2pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024