Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4sin^2(x/2)+cos^2(x)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4sin2(2x​)+cos2(x)=2

Solution

x=2π​+2πn,x=23π​+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n
Solution steps
4sin2(2x​)+cos2(x)=2
Subtract 2 from both sides4sin2(2x​)+cos2(x)−2=0
Rewrite using trig identities
−2+cos2(x)+4sin2(2x​)
Use the following identity:sin2(θ)=21−cos(2θ)​
Use the Double Angle identitycos(2θ)=1−2sin2(θ)
Switch sides2sin2(θ)−1=−cos(2θ)
Add 1 to both sides2sin2(θ)=1−cos(2θ)
Divide both sides by 2sin2(θ)=21−cos(2θ)​
=−2+cos2(x)+4⋅21−cos(2⋅2x​)​
Simplify −2+cos2(x)+4⋅21−cos(2⋅2x​)​:cos2(x)−2cos(x)
−2+cos2(x)+4⋅21−cos(2⋅2x​)​
4⋅21−cos(2⋅2x​)​=2(−cos(x)+1)
4⋅21−cos(2⋅2x​)​
21−cos(2⋅2x​)​=21−cos(x)​
21−cos(2⋅2x​)​
Multiply 2⋅2x​:x
2⋅2x​
Multiply fractions: a⋅cb​=ca⋅b​=2x⋅2​
Cancel the common factor: 2=x
=21−cos(x)​
=4⋅2−cos(x)+1​
Multiply fractions: a⋅cb​=ca⋅b​=2(1−cos(x))⋅4​
Divide the numbers: 24​=2=2(−cos(x)+1)
=−2+cos2(x)+2(−cos(x)+1)
Expand 2(−cos(x)+1):−2cos(x)+2
2(−cos(x)+1)
Apply the distributive law: a(b+c)=ab+aca=2,b=−cos(x),c=1=2(−cos(x))+2⋅1
Apply minus-plus rules+(−a)=−a=−2cos(x)+2⋅1
Multiply the numbers: 2⋅1=2=−2cos(x)+2
=−2+cos2(x)−2cos(x)+2
Simplify −2+cos2(x)−2cos(x)+2:cos2(x)−2cos(x)
−2+cos2(x)−2cos(x)+2
Group like terms=cos2(x)−2cos(x)−2+2
−2+2=0=cos2(x)−2cos(x)
=cos2(x)−2cos(x)
=cos2(x)−2cos(x)
cos2(x)−2cos(x)=0
Solve by substitution
cos2(x)−2cos(x)=0
Let: cos(x)=uu2−2u=0
u2−2u=0:u=2,u=0
u2−2u=0
Solve with the quadratic formula
u2−2u=0
Quadratic Equation Formula:
For a=1,b=−2,c=0u1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅0​​
u1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅0​​
(−2)2−4⋅1⋅0​=2
(−2)2−4⋅1⋅0​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22−4⋅1⋅0​
Apply rule 0⋅a=0=22−0​
22−0=22=22​
Apply radical rule: assuming a≥0=2
u1,2​=2⋅1−(−2)±2​
Separate the solutionsu1​=2⋅1−(−2)+2​,u2​=2⋅1−(−2)−2​
u=2⋅1−(−2)+2​:2
2⋅1−(−2)+2​
Apply rule −(−a)=a=2⋅12+2​
Add the numbers: 2+2=4=2⋅14​
Multiply the numbers: 2⋅1=2=24​
Divide the numbers: 24​=2=2
u=2⋅1−(−2)−2​:0
2⋅1−(−2)−2​
Apply rule −(−a)=a=2⋅12−2​
Subtract the numbers: 2−2=0=2⋅10​
Multiply the numbers: 2⋅1=2=20​
Apply rule a0​=0,a=0=0
The solutions to the quadratic equation are:u=2,u=0
Substitute back u=cos(x)cos(x)=2,cos(x)=0
cos(x)=2,cos(x)=0
cos(x)=2:No Solution
cos(x)=2
−1≤cos(x)≤1NoSolution
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^2(x)-2cos(2x)=112cot^2(x)=4(1+sin(x))/(cos^2(x))=25sin^2(θ)+2sin(θ)=0cos(θ)cos(3θ)-sin(θ)sin(3θ)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 4sin^2(x/2)+cos^2(x)=2 ?

    The general solution for 4sin^2(x/2)+cos^2(x)=2 is x= pi/2+2pin,x=(3pi)/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024