解题
积分(反导数)计算器导数计算器代数计算器矩阵计算器更多的...
图表
线图指数图二次图正弦图更多的...
计算器
体质指数计算器复利计算器百分比计算器加速度计算器更多的...
几何
勾股定理计算器圆形面积计算器等腰三角形计算器三角形计算器更多的...
工具
笔记簿小组主题工作表练习验证
zs
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
受欢迎的 三角函数 >

10sec(2x)+5tan(2x)-15=0

  • 初等代数
  • 代数
  • 微积分入门
  • 微积分
  • 函数
  • 线性代数
  • 三角
  • 统计
  • 化学

解答

10sec(2x)+5tan(2x)−15=0

解答

x=20.56432…​+πn,x=−21.20782…​+πn
+1
度数
x=16.16676…∘+180∘n,x=−34.60171…∘+180∘n
求解步骤
10sec(2x)+5tan(2x)−15=0
用 sin, cos 表示10⋅cos(2x)1​+5⋅cos(2x)sin(2x)​−15=0
化简 10⋅cos(2x)1​+5⋅cos(2x)sin(2x)​−15:cos(2x)10+5sin(2x)−15cos(2x)​
10⋅cos(2x)1​+5⋅cos(2x)sin(2x)​−15
10⋅cos(2x)1​=cos(2x)10​
10⋅cos(2x)1​
分式相乘: a⋅cb​=ca⋅b​=cos(2x)1⋅10​
数字相乘:1⋅10=10=cos(2x)10​
5⋅cos(2x)sin(2x)​=cos(2x)5sin(2x)​
5⋅cos(2x)sin(2x)​
分式相乘: a⋅cb​=ca⋅b​=cos(2x)sin(2x)⋅5​
=cos(2x)10​+cos(2x)5sin(2x)​−15
合并分式 cos(2x)10​+cos(2x)5sin(2x)​:cos(2x)10+5sin(2x)​
使用法则 ca​±cb​=ca±b​=cos(2x)10+5sin(2x)​
=cos(2x)5sin(2x)+10​−15
将项转换为分式: 15=cos(2x)15cos(2x)​=cos(2x)10+sin(2x)⋅5​−cos(2x)15cos(2x)​
因为分母相等,所以合并分式: ca​±cb​=ca±b​=cos(2x)10+sin(2x)⋅5−15cos(2x)​
cos(2x)10+5sin(2x)−15cos(2x)​=0
g(x)f(x)​=0⇒f(x)=010+5sin(2x)−15cos(2x)=0
两边加上 15cos(2x)10+5sin(2x)=15cos(2x)
两边进行平方(10+5sin(2x))2=(15cos(2x))2
两边减去 (15cos(2x))2(10+5sin(2x))2−225cos2(2x)=0
使用三角恒等式改写
(10+5sin(2x))2−225cos2(2x)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(10+5sin(2x))2−225(1−sin2(2x))
化简 (10+5sin(2x))2−225(1−sin2(2x)):250sin2(2x)+100sin(2x)−125
(10+5sin(2x))2−225(1−sin2(2x))
(10+5sin(2x))2:100+100sin(2x)+25sin2(2x)
使用完全平方公式: (a+b)2=a2+2ab+b2a=10,b=5sin(2x)
=102+2⋅10⋅5sin(2x)+(5sin(2x))2
化简 102+2⋅10⋅5sin(2x)+(5sin(2x))2:100+100sin(2x)+25sin2(2x)
102+2⋅10⋅5sin(2x)+(5sin(2x))2
102=100
102
102=100=100
2⋅10⋅5sin(2x)=100sin(2x)
2⋅10⋅5sin(2x)
数字相乘:2⋅10⋅5=100=100sin(2x)
(5sin(2x))2=25sin2(2x)
(5sin(2x))2
使用指数法则: (a⋅b)n=anbn=52sin2(2x)
52=25=25sin2(2x)
=100+100sin(2x)+25sin2(2x)
=100+100sin(2x)+25sin2(2x)
=100+100sin(2x)+25sin2(2x)−225(1−sin2(2x))
乘开 −225(1−sin2(2x)):−225+225sin2(2x)
−225(1−sin2(2x))
使用分配律: a(b−c)=ab−aca=−225,b=1,c=sin2(2x)=−225⋅1−(−225)sin2(2x)
使用加减运算法则−(−a)=a=−225⋅1+225sin2(2x)
数字相乘:225⋅1=225=−225+225sin2(2x)
=100+100sin(2x)+25sin2(2x)−225+225sin2(2x)
化简 100+100sin(2x)+25sin2(2x)−225+225sin2(2x):250sin2(2x)+100sin(2x)−125
100+100sin(2x)+25sin2(2x)−225+225sin2(2x)
对同类项分组=100sin(2x)+25sin2(2x)+225sin2(2x)+100−225
同类项相加:25sin2(2x)+225sin2(2x)=250sin2(2x)=100sin(2x)+250sin2(2x)+100−225
数字相加/相减:100−225=−125=250sin2(2x)+100sin(2x)−125
=250sin2(2x)+100sin(2x)−125
=250sin2(2x)+100sin(2x)−125
−125+100sin(2x)+250sin2(2x)=0
用替代法求解
−125+100sin(2x)+250sin2(2x)=0
令:sin(2x)=u−125+100u+250u2=0
−125+100u+250u2=0:u=10−2+36​​,u=−102+36​​
−125+100u+250u2=0
改写成标准形式 ax2+bx+c=0250u2+100u−125=0
使用求根公式求解
250u2+100u−125=0
二次方程求根公式:
若 a=250,b=100,c=−125u1,2​=2⋅250−100±1002−4⋅250(−125)​​
u1,2​=2⋅250−100±1002−4⋅250(−125)​​
1002−4⋅250(−125)​=1506​
1002−4⋅250(−125)​
使用法则 −(−a)=a=1002+4⋅250⋅125​
数字相乘:4⋅250⋅125=125000=1002+125000​
1002=10000=10000+125000​
数字相加:10000+125000=135000=135000​
135000质因数分解:23⋅33⋅54
135000
=54⋅23⋅33​
使用指数法则: ab+c=ab⋅ac=54⋅22⋅32⋅2⋅3​
使用根式运算法则: =22​32​54​2⋅3​
使用根式运算法则: 22​=2=232​54​2⋅3​
使用根式运算法则: 32​=3=2⋅354​2⋅3​
使用根式运算法则: 54​=524​=52=52⋅2⋅32⋅3​
整理后得=1506​
u1,2​=2⋅250−100±1506​​
将解分隔开u1​=2⋅250−100+1506​​,u2​=2⋅250−100−1506​​
u=2⋅250−100+1506​​:10−2+36​​
2⋅250−100+1506​​
数字相乘:2⋅250=500=500−100+1506​​
分解 −100+1506​:50(−2+36​)
−100+1506​
改写为=−50⋅2+50⋅36​
因式分解出通项 50=50(−2+36​)
=50050(−2+36​)​
约分:50=10−2+36​​
u=2⋅250−100−1506​​:−102+36​​
2⋅250−100−1506​​
数字相乘:2⋅250=500=500−100−1506​​
分解 −100−1506​:−50(2+36​)
−100−1506​
改写为=−50⋅2−50⋅36​
因式分解出通项 50=−50(2+36​)
=−50050(2+36​)​
约分:50=−102+36​​
二次方程组的解是:u=10−2+36​​,u=−102+36​​
u=sin(2x)代回sin(2x)=10−2+36​​,sin(2x)=−102+36​​
sin(2x)=10−2+36​​,sin(2x)=−102+36​​
sin(2x)=10−2+36​​:x=2arcsin(10−2+36​​)​+πn,x=2π​−2arcsin(10−2+36​​)​+πn
sin(2x)=10−2+36​​
使用反三角函数性质
sin(2x)=10−2+36​​
sin(2x)=10−2+36​​的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn2x=arcsin(10−2+36​​)+2πn,2x=π−arcsin(10−2+36​​)+2πn
2x=arcsin(10−2+36​​)+2πn,2x=π−arcsin(10−2+36​​)+2πn
解 2x=arcsin(10−2+36​​)+2πn:x=2arcsin(10−2+36​​)​+πn
2x=arcsin(10−2+36​​)+2πn
两边除以 2
2x=arcsin(10−2+36​​)+2πn
两边除以 222x​=2arcsin(10−2+36​​)​+22πn​
化简x=2arcsin(10−2+36​​)​+πn
x=2arcsin(10−2+36​​)​+πn
解 2x=π−arcsin(10−2+36​​)+2πn:x=2π​−2arcsin(10−2+36​​)​+πn
2x=π−arcsin(10−2+36​​)+2πn
两边除以 2
2x=π−arcsin(10−2+36​​)+2πn
两边除以 222x​=2π​−2arcsin(10−2+36​​)​+22πn​
化简x=2π​−2arcsin(10−2+36​​)​+πn
x=2π​−2arcsin(10−2+36​​)​+πn
x=2arcsin(10−2+36​​)​+πn,x=2π​−2arcsin(10−2+36​​)​+πn
sin(2x)=−102+36​​:x=−2arcsin(102+36​​)​+πn,x=2π​+2arcsin(102+36​​)​+πn
sin(2x)=−102+36​​
使用反三角函数性质
sin(2x)=−102+36​​
sin(2x)=−102+36​​的通解sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πn2x=arcsin(−102+36​​)+2πn,2x=π+arcsin(102+36​​)+2πn
2x=arcsin(−102+36​​)+2πn,2x=π+arcsin(102+36​​)+2πn
解 2x=arcsin(−102+36​​)+2πn:x=−2arcsin(102+36​​)​+πn
2x=arcsin(−102+36​​)+2πn
化简 arcsin(−102+36​​)+2πn:−arcsin(102+36​​)+2πn
arcsin(−102+36​​)+2πn
利用以下特性:arcsin(−x)=−arcsin(x)arcsin(−102+36​​)=−arcsin(102+36​​)=−arcsin(102+36​​)+2πn
2x=−arcsin(102+36​​)+2πn
两边除以 2
2x=−arcsin(102+36​​)+2πn
两边除以 222x​=−2arcsin(102+36​​)​+22πn​
化简x=−2arcsin(102+36​​)​+πn
x=−2arcsin(102+36​​)​+πn
解 2x=π+arcsin(102+36​​)+2πn:x=2π​+2arcsin(102+36​​)​+πn
2x=π+arcsin(102+36​​)+2πn
两边除以 2
2x=π+arcsin(102+36​​)+2πn
两边除以 222x​=2π​+2arcsin(102+36​​)​+22πn​
化简x=2π​+2arcsin(102+36​​)​+πn
x=2π​+2arcsin(102+36​​)​+πn
x=−2arcsin(102+36​​)​+πn,x=2π​+2arcsin(102+36​​)​+πn
合并所有解x=2arcsin(10−2+36​​)​+πn,x=2π​−2arcsin(10−2+36​​)​+πn,x=−2arcsin(102+36​​)​+πn,x=2π​+2arcsin(102+36​​)​+πn
将解代入原方程进行验证
将它们代入 10sec(2x)+5tan(2x)−15=0检验解是否符合
去除与方程不符的解。
检验 2arcsin(10−2+36​​)​+πn的解:真
2arcsin(10−2+36​​)​+πn
代入 n=12arcsin(10−2+36​​)​+π1
对于 10sec(2x)+5tan(2x)−15=0代入x=2arcsin(10−2+36​​)​+π110sec​2​2arcsin(10−2+36​​)​+π1​​+5tan​2​2arcsin(10−2+36​​)​+π1​​−15=0
整理后得0=0
⇒真
检验 2π​−2arcsin(10−2+36​​)​+πn的解:假
2π​−2arcsin(10−2+36​​)​+πn
代入 n=12π​−2arcsin(10−2+36​​)​+π1
对于 10sec(2x)+5tan(2x)−15=0代入x=2π​−2arcsin(10−2+36​​)​+π110sec​2​2π​−2arcsin(10−2+36​​)​+π1​​+5tan​2​2π​−2arcsin(10−2+36​​)​+π1​​−15=0
整理后得−30=0
⇒假
检验 −2arcsin(102+36​​)​+πn的解:真
−2arcsin(102+36​​)​+πn
代入 n=1−2arcsin(102+36​​)​+π1
对于 10sec(2x)+5tan(2x)−15=0代入x=−2arcsin(102+36​​)​+π110sec​2​−2arcsin(102+36​​)​+π1​​+5tan​2​−2arcsin(102+36​​)​+π1​​−15=0
整理后得0=0
⇒真
检验 2π​+2arcsin(102+36​​)​+πn的解:假
2π​+2arcsin(102+36​​)​+πn
代入 n=12π​+2arcsin(102+36​​)​+π1
对于 10sec(2x)+5tan(2x)−15=0代入x=2π​+2arcsin(102+36​​)​+π110sec​2​2π​+2arcsin(102+36​​)​+π1​​+5tan​2​2π​+2arcsin(102+36​​)​+π1​​−15=0
整理后得−30=0
⇒假
x=2arcsin(10−2+36​​)​+πn,x=−2arcsin(102+36​​)​+πn
以小数形式表示解x=20.56432…​+πn,x=−21.20782…​+πn

作图

Sorry, your browser does not support this application
查看交互式图形

流行的例子

-tan(x)+sec(x)=1,0<= x<= 2pi3tan(x/9)-sqrt(3)=0solvefor x,tan(x)= 1/(sqrt(3))cos(x)= 9/122tan^2(x)+1=sec^2(x)+sin^2(x)+cos^2(x)
学习工具人工智能数学求解器工作表练习主题计算器作图计算器几何计算器验证解决方案
应用Symbolab 应用程序 (Android)作图计算器 (Android)练习 (Android)Symbolab 应用程序 (iOS)作图计算器 (iOS)练习 (iOS)Chrome 扩展程序Symbolab Math Solver API
公司关于 Symbolab日志帮助
合法的隐私权条款Cookie 政策Cookie 设置请勿出售或分享我的个人信息版权、社区准则、DSA 和其他法律资源Learneo 法律中心
社交媒体
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024