Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3tan^2(θ)+1= 2/(tan^2(θ))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3tan2(θ)+1=tan2(θ)2​

Solution

θ=0.68471…+πn,θ=−0.68471…+πn
+1
Degrees
θ=39.23152…∘+180∘n,θ=−39.23152…∘+180∘n
Solution steps
3tan2(θ)+1=tan2(θ)2​
Solve by substitution
3tan2(θ)+1=tan2(θ)2​
Let: tan(θ)=u3u2+1=u22​
3u2+1=u22​:u=32​​,u=−32​​,u=i,u=−i
3u2+1=u22​
Multiply both sides by u2
3u2+1=u22​
Multiply both sides by u23u2u2+1⋅u2=u22​u2
Simplify 3u2u2:3u4
3u2u2+1⋅u2=u22​u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=3u2+2
Add the numbers: 2+2=4=3u4
3u4+u2=2
3u4+u2=2
Solve 3u4+u2=2:u=32​​,u=−32​​,u=i,u=−i
3u4+u2=2
Move 2to the left side
3u4+u2=2
Subtract 2 from both sides3u4+u2−2=2−2
Simplify3u4+u2−2=0
3u4+u2−2=0
Rewrite the equation with v=u2 and v2=u43v2+v−2=0
Solve 3v2+v−2=0:v=32​,v=−1
3v2+v−2=0
Solve with the quadratic formula
3v2+v−2=0
Quadratic Equation Formula:
For a=3,b=1,c=−2v1,2​=2⋅3−1±12−4⋅3(−2)​​
v1,2​=2⋅3−1±12−4⋅3(−2)​​
12−4⋅3(−2)​=5
12−4⋅3(−2)​
Apply rule 1a=112=1=1−4⋅3(−2)​
Apply rule −(−a)=a=1+4⋅3⋅2​
Multiply the numbers: 4⋅3⋅2=24=1+24​
Add the numbers: 1+24=25=25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
v1,2​=2⋅3−1±5​
Separate the solutionsv1​=2⋅3−1+5​,v2​=2⋅3−1−5​
v=2⋅3−1+5​:32​
2⋅3−1+5​
Add/Subtract the numbers: −1+5=4=2⋅34​
Multiply the numbers: 2⋅3=6=64​
Cancel the common factor: 2=32​
v=2⋅3−1−5​:−1
2⋅3−1−5​
Subtract the numbers: −1−5=−6=2⋅3−6​
Multiply the numbers: 2⋅3=6=6−6​
Apply the fraction rule: b−a​=−ba​=−66​
Apply rule aa​=1=−1
The solutions to the quadratic equation are:v=32​,v=−1
v=32​,v=−1
Substitute back v=u2,solve for u
Solve u2=32​:u=32​​,u=−32​​
u2=32​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=32​​,u=−32​​
Solve u2=−1:u=i,u=−i
u2=−1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−1​,u=−−1​
Simplify −1​:i
−1​
Apply imaginary number rule: −1​=i=i
Simplify −−1​:−i
−−1​
Apply imaginary number rule: −1​=i=−i
u=i,u=−i
The solutions are
u=32​​,u=−32​​,u=i,u=−i
u=32​​,u=−32​​,u=i,u=−i
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u22​ and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=32​​,u=−32​​,u=i,u=−i
Substitute back u=tan(θ)tan(θ)=32​​,tan(θ)=−32​​,tan(θ)=i,tan(θ)=−i
tan(θ)=32​​,tan(θ)=−32​​,tan(θ)=i,tan(θ)=−i
tan(θ)=32​​:θ=arctan(32​​)+πn
tan(θ)=32​​
Apply trig inverse properties
tan(θ)=32​​
General solutions for tan(θ)=32​​tan(x)=a⇒x=arctan(a)+πnθ=arctan(32​​)+πn
θ=arctan(32​​)+πn
tan(θ)=−32​​:θ=arctan(−32​​)+πn
tan(θ)=−32​​
Apply trig inverse properties
tan(θ)=−32​​
General solutions for tan(θ)=−32​​tan(x)=−a⇒x=arctan(−a)+πnθ=arctan(−32​​)+πn
θ=arctan(−32​​)+πn
tan(θ)=i:No Solution
tan(θ)=i
NoSolution
tan(θ)=−i:No Solution
tan(θ)=−i
NoSolution
Combine all the solutionsθ=arctan(32​​)+πn,θ=arctan(−32​​)+πn
Show solutions in decimal formθ=0.68471…+πn,θ=−0.68471…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4tan(x)=2sec^2(x)sin(x)+cos(x)+cot(x)=csc(x)cos^2(x)+cos(x)=cos(2x)cos(x)= 3/(sqrt(13))3tan^3(x)-9tan(x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 3tan^2(θ)+1= 2/(tan^2(θ)) ?

    The general solution for 3tan^2(θ)+1= 2/(tan^2(θ)) is θ=0.68471…+pin,θ=-0.68471…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024