Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3sinh(x)+cosh(x)=-2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3sinh(x)+cosh(x)=−2

Solution

x=ln(2−1+3​​)
+1
Degrees
x=−57.58526…∘
Solution steps
3sinh(x)+cosh(x)=−2
Rewrite using trig identities
3sinh(x)+cosh(x)=−2
Use the Hyperbolic identity: sinh(x)=2ex−e−x​3⋅2ex−e−x​+cosh(x)=−2
Use the Hyperbolic identity: cosh(x)=2ex+e−x​3⋅2ex−e−x​+2ex+e−x​=−2
3⋅2ex−e−x​+2ex+e−x​=−2
3⋅2ex−e−x​+2ex+e−x​=−2:x=ln(2−1+3​​)
3⋅2ex−e−x​+2ex+e−x​=−2
Multiply both sides by 23⋅2ex−e−x​⋅2+2ex+e−x​⋅2=−2⋅2
Simplify3(ex−e−x)+ex+e−x=−4
Apply exponent rules
3(ex−e−x)+ex+e−x=−4
Apply exponent rule: abc=(ab)ce−x=(ex)−13(ex−(ex)−1)+ex+(ex)−1=−4
3(ex−(ex)−1)+ex+(ex)−1=−4
Rewrite the equation with ex=u3(u−(u)−1)+u+(u)−1=−4
Solve 3(u−u−1)+u+u−1=−4:u=2−1+3​​,u=−21+3​​
3(u−u−1)+u+u−1=−4
Refine3(u−u1​)+u+u1​=−4
Multiply both sides by u
3(u−u1​)+u+u1​=−4
Multiply both sides by u3(u−u1​)u+uu+u1​u=−4u
Simplify
3(u−u1​)u+uu+u1​u=−4u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify u1​u:1
u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅u​
Cancel the common factor: u=1
3(u−u1​)u+u2+1=−4u
3(u−u1​)u+u2+1=−4u
3(u−u1​)u+u2+1=−4u
Expand 3(u−u1​)u+u2+1:4u2−2
3(u−u1​)u+u2+1
=3u(u−u1​)+u2+1
Expand 3u(u−u1​):3u2−3
3u(u−u1​)
Apply the distributive law: a(b−c)=ab−aca=3u,b=u,c=u1​=3uu−3uu1​
=3uu−3⋅u1​u
Simplify 3uu−3⋅u1​u:3u2−3
3uu−3⋅u1​u
3uu=3u2
3uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=3u1+1
Add the numbers: 1+1=2=3u2
3⋅u1​u=3
3⋅u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅3u​
Cancel the common factor: u=1⋅3
Multiply the numbers: 1⋅3=3=3
=3u2−3
=3u2−3
=3u2−3+u2+1
Simplify 3u2−3+u2+1:4u2−2
3u2−3+u2+1
Group like terms=3u2+u2−3+1
Add similar elements: 3u2+u2=4u2=4u2−3+1
Add/Subtract the numbers: −3+1=−2=4u2−2
=4u2−2
4u2−2=−4u
Solve 4u2−2=−4u:u=2−1+3​​,u=−21+3​​
4u2−2=−4u
Move 4uto the left side
4u2−2=−4u
Add 4u to both sides4u2−2+4u=−4u+4u
Simplify4u2−2+4u=0
4u2−2+4u=0
Write in the standard form ax2+bx+c=04u2+4u−2=0
Solve with the quadratic formula
4u2+4u−2=0
Quadratic Equation Formula:
For a=4,b=4,c=−2u1,2​=2⋅4−4±42−4⋅4(−2)​​
u1,2​=2⋅4−4±42−4⋅4(−2)​​
42−4⋅4(−2)​=43​
42−4⋅4(−2)​
Apply rule −(−a)=a=42+4⋅4⋅2​
Multiply the numbers: 4⋅4⋅2=32=42+32​
42=16=16+32​
Add the numbers: 16+32=48=48​
Prime factorization of 48:24⋅3
48
48divides by 248=24⋅2=2⋅24
24divides by 224=12⋅2=2⋅2⋅12
12divides by 212=6⋅2=2⋅2⋅2⋅6
6divides by 26=3⋅2=2⋅2⋅2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅3
=24⋅3
=24⋅3​
Apply radical rule: =3​24​
Apply radical rule: 24​=224​=22=223​
Refine=43​
u1,2​=2⋅4−4±43​​
Separate the solutionsu1​=2⋅4−4+43​​,u2​=2⋅4−4−43​​
u=2⋅4−4+43​​:2−1+3​​
2⋅4−4+43​​
Multiply the numbers: 2⋅4=8=8−4+43​​
Factor −4+43​:4(−1+3​)
−4+43​
Rewrite as=−4⋅1+43​
Factor out common term 4=4(−1+3​)
=84(−1+3​)​
Cancel the common factor: 4=2−1+3​​
u=2⋅4−4−43​​:−21+3​​
2⋅4−4−43​​
Multiply the numbers: 2⋅4=8=8−4−43​​
Factor −4−43​:−4(1+3​)
−4−43​
Rewrite as=−4⋅1−43​
Factor out common term 4=−4(1+3​)
=−84(1+3​)​
Cancel the common factor: 4=−21+3​​
The solutions to the quadratic equation are:u=2−1+3​​,u=−21+3​​
u=2−1+3​​,u=−21+3​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 3(u−u−1)+u+u−1 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=2−1+3​​,u=−21+3​​
u=2−1+3​​,u=−21+3​​
Substitute back u=ex,solve for x
Solve ex=2−1+3​​:x=ln(2−1+3​​)
ex=2−1+3​​
Apply exponent rules
ex=2−1+3​​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(2−1+3​​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(2−1+3​​)
x=ln(2−1+3​​)
Solve ex=−21+3​​:No Solution for x∈R
ex=−21+3​​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=ln(2−1+3​​)
x=ln(2−1+3​​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2+3*x)-cos(-0.5)=02cos(θ)=1,0<= θ<= 2piarctan(x+1)+arctan(x-1)=arctan(8/31)4cos(2θ)+19=-22cos(θ)+68cos^2(x)+16cos(x)+8=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 3sinh(x)+cosh(x)=-2 ?

    The general solution for 3sinh(x)+cosh(x)=-2 is x=ln((-1+sqrt(3))/2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024