Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,sqrt(1+sin^3(xy^2))=y

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solve for x,1+sin3(xy2)​=y

Solution

+1
Radians
Solution steps
1+sin3(xy2)​=y
Square both sides:1+sin3(xy2)=y2
1+sin3(xy2)​=y
(1+sin3(xy2)​)2=y2
Expand (1+sin3(xy2)​)2:1+sin3(xy2)
(1+sin3(xy2)​)2
Apply radical rule: a​=a21​=((1+sin3(xy2))21​)2
Apply exponent rule: (ab)c=abc=(1+sin3(xy2))21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1+sin3(xy2)
1+sin3(xy2)=y2
1+sin3(xy2)=y2
Solve
1+sin3(xy2)=y2
Move 1to the right side
1+sin3(xy2)=y2
Subtract 1 from both sides1+sin3(xy2)−1=y2−1
Simplifysin3(xy2)=y2−1
sin3(xy2)=y2−1
For xn=f(a), n is odd, the solution is
Verify Solutions:
Check the solutions by plugging them into 1+sin3(xy2)​=y
Remove the ones that don't agree with the equation.
Plug
Square both sides:y2=y2
Expand
Apply radical rule: a​=a21​
Apply exponent rule: (ab)c=abc
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
Expand
Apply radical rule: =((y2−1)31​)3
Apply exponent rule: (ab)c=abc=(y2−1)31​⋅3
31​⋅3=1
31​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=31⋅3​
Cancel the common factor: 3=1
=y2−1
=1+y2−1
Group like terms=y2+1−1
1−1=0=y2
=y2
y2=y2
y2=y2
Both sides are equalTrueforally
Verify Solutions:y<0False,y=0True,y>0True
Combine domain interval with solution interval:Trueforally
Find the function intervals:y<0,y=0,y>0
Find the even roots arguments zeroes:
Solve
Factor
Rewrite 1 as 13
Apply Sum of Cubes Formula: x3+y3=(x+y)(x2−xy+y2)
Apply radical rule: =((y2−1)31​)2
Apply exponent rule: (ab)c=abc=(y2−1)31​⋅2
31​⋅2=32​
31​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=(y2−1)32​
Using the Zero Factor Principle: If ab=0then a=0or b=0
Solve
Move 1to the right side
Subtract 1 from both sides
Simplify
Take both sides of the equation to the power of 3:y2−1=−1
Expand
Apply radical rule: =((y2−1)31​)3
Apply exponent rule: (ab)c=abc=(y2−1)31​⋅3
31​⋅3=1
31​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=31⋅3​
Cancel the common factor: 3=1
=y2−1
Expand (−1)3:−1
(−1)3
Apply exponent rule: (−a)n=−an,if n is odd(−1)3=−13=−13
Apply rule 1a=1=−1
y2−1=−1
y2−1=−1
Solve y2−1=−1:y=0
y2−1=−1
Move 1to the right side
y2−1=−1
Add 1 to both sidesy2−1+1=−1+1
Simplifyy2=0
y2=0
Apply rule xn=0⇒x=0
y=0
y=0
Verify Solutions:y=0True
Check the solutions by plugging them into
Remove the ones that don't agree with the equation.
Plug in y=0:True
Apply rule 0a=002=0
Subtract the numbers: 0−1=−1
if n is odd=−1
=−1+1
Add/Subtract the numbers: −1+1=0=0
0=0
True
The solution isy=0
Solve No Solution for y∈R
Use the following exponent property
Rewrite the equation with u2−u+1=0
Solve u2−u+1=0:No Solution for u∈R
u2−u+1=0
Discriminant u2−u+1=0:−3
u2−u+1=0
For a quadratic equation of the form ax2+bx+c=0 the discriminant is b2−4acFor a=1,b=−1,c=1:(−1)2−4⋅1⋅1(−1)2−4⋅1⋅1
Expand (−1)2−4⋅1⋅1:−3
(−1)2−4⋅1⋅1
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=1−4
Subtract the numbers: 1−4=−3=−3
−3
Discriminant cannot be negative for u∈R
The solution isNoSolutionforu∈R
NoSolutionfory∈R
y=0
Verify Solutions:y=0True
Check the solutions by plugging them into
Remove the ones that don't agree with the equation.
Plug in y=0:True
Apply rule 0a=002=0
Subtract the numbers: 0−1=−1
if n is odd=−1
=(−1)3
Apply exponent rule: (−a)n=−an,if n is odd(−1)3=−13=−13
Apply rule 1a=1=−1
=1−1
Subtract the numbers: 1−1=0=0
0=0
True
The solution isy=0
y=0
The intervals are defined around the zeroes:y<0,y=0,y>0
Combine intervals with domainy<0,y=0,y>0
Check the solutions by plugging them into
Remove the ones that don't agree with the equation.
PlugFalse
The solution isy≥0
The solution is
Apply trig inverse properties
General solutions for sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πn
Solve
Divide both sides by y2;y=0
Divide both sides by y2;y=0
Simplify
Solve
Divide both sides by y2;y=0
Divide both sides by y2;y=0
Simplify

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin((2x)/3)-1=04sin^2(x)+1=4-sin^2(x)=-3+3sin^2(x)cos(3x)=0.55cos^2(x)+cos(x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024