Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

73500=130000*sin(x)+0.15*130000*cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

73500=130000⋅sin(x)+0.15⋅130000⋅cos(x)

Solution

x=2.39936…+2πn,x=0.44444…+2πn
+1
Degrees
x=137.47362…∘+360∘n,x=25.46484…∘+360∘n
Solution steps
73500=130000sin(x)+0.15⋅130000cos(x)
Subtract 0.15130000cos(x) from both sides130000sin(x)=73500−19500cos(x)
Square both sides(130000sin(x))2=(73500−19500cos(x))2
Subtract (73500−19500cos(x))2 from both sides1300002sin2(x)−735002+2866500000cos(x)−380250000cos2(x)=0
Rewrite using trig identities
−735002+1300002sin2(x)+2866500000cos(x)−380250000cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−735002+1300002(1−cos2(x))+2866500000cos(x)−380250000cos2(x)
−735002+(1−cos2(x))⋅1300002+2866500000cos(x)−380250000cos2(x)=0
Solve by substitution
−735002+(1−cos2(x))⋅1300002+2866500000cos(x)−380250000cos2(x)=0
Let: cos(x)=u−735002+(1−u2)⋅1300002+2866500000u−380250000u2=0
−735002+(1−u2)⋅1300002+2866500000u−380250000u2=0:u=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​,u=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
−735002+(1−u2)⋅1300002+2866500000u−380250000u2=0
Expand −735002+(1−u2)⋅1300002+2866500000u−380250000u2:−735002+1300002−1300002u2+2866500000u−380250000u2
−735002+(1−u2)⋅1300002+2866500000u−380250000u2
=−735002+1300002(1−u2)+2866500000u−380250000u2
Expand 1300002(1−u2):1300002−1300002u2
1300002(1−u2)
Apply the distributive law: a(b−c)=ab−aca=1300002,b=1,c=u2=1300002⋅1−1300002u2
Multiply: 1300002⋅1=1300002=1300002−1300002u2
=−735002+1300002−1300002u2+2866500000u−380250000u2
−735002+1300002−1300002u2+2866500000u−380250000u2=0
Write in the standard form ax2+bx+c=0−(1300002+380250000)u2+2866500000u−735002+1300002=0
Solve with the quadratic formula
−(1300002+380250000)u2+2866500000u−735002+1300002=0
Quadratic Equation Formula:
For a=−1300002−380250000,b=2866500000,c=−735002+1300002u1,2​=2(−1300002−380250000)−2866500000±28665000002−4(−1300002−380250000)(−735002+1300002)​​
u1,2​=2(−1300002−380250000)−2866500000±28665000002−4(−1300002−380250000)(−735002+1300002)​​
28665000002−4(−1300002−380250000)(−735002+1300002)​=28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​
28665000002−4(−1300002−380250000)(−735002+1300002)​
Expand 28665000002−4(−1300002−380250000)(−735002+1300002):28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
28665000002−4(−1300002−380250000)(−735002+1300002)
Expand −4(−1300002−380250000)(−735002+1300002):−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
Expand (−1300002−380250000)(−735002+1300002):514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000
(−1300002−380250000)(−735002+1300002)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=−1300002,b=−380250000,c=−735002,d=1300002=(−1300002)(−735002)+(−1300002)⋅1300002+(−380250000)(−735002)+(−380250000)⋅1300002
Apply minus-plus rules(−a)(−b)=ab,+(−a)=−a=1300002⋅735002−1300002⋅1300002+735002⋅380250000−1300002⋅380250000
Simplify 1300002⋅735002−1300002⋅1300002+735002⋅380250000−1300002⋅380250000:514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000
1300002⋅735002−1300002⋅1300002+735002⋅380250000−1300002⋅380250000
1300002⋅735002=514⋅14958268416
1300002⋅735002
Factor integer 130000=24⋅54⋅13=(24⋅54⋅13)2⋅735002
Apply exponent rule: (ab)c=acbc(24⋅54⋅13)2=(24)2(54)2⋅132=(24)2(54)2⋅132⋅735002
Apply exponent rule: (ab)c=abc(24)2=24⋅2,(54)2=54⋅2=24⋅2⋅54⋅2⋅132⋅735002
Refine=28⋅58⋅132⋅735002
Factor integer 73500=53⋅22⋅147=28⋅58⋅132(22⋅53⋅147)2
Apply exponent rule: (ab)c=acbc(22⋅53⋅147)2=(22)2(53)2⋅1472=28⋅58⋅132(22)2(53)2⋅1472
Apply exponent rule: (ab)c=abc(22)2=22⋅2,(53)2=53⋅2=28⋅58⋅132⋅22⋅2⋅53⋅2⋅1472
Refine=28⋅58⋅132⋅24⋅56⋅1472
Apply exponent rule: ab⋅ac=ab+c28⋅24=28+4=58⋅132⋅28+4⋅56⋅1472
Add the numbers: 8+4=12=58⋅132⋅212⋅56⋅1472
Apply exponent rule: ab⋅ac=ab+c58⋅56=58+6=132⋅212⋅58+6⋅1472
Add the numbers: 8+6=14=132⋅212⋅514⋅1472
132=169=514⋅212⋅1472⋅169
212=4096=514⋅1472⋅169⋅4096
1472=21609=514⋅169⋅4096⋅21609
Multiply the numbers: 169⋅4096⋅21609=14958268416=514⋅14958268416
1300002⋅1300002=1300004
1300002⋅1300002
Apply exponent rule: ab⋅ac=ab+c1300002⋅1300002=1300002+2=1300002+2
Add the numbers: 2+2=4=1300004
=514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000
=514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000
=−4(514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000)
Expand −4(514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000):−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
−4(514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000)
Distribute parentheses=(−4)⋅514⋅14958268416+(−4)(−1300004)+(−4)⋅735002⋅380250000+(−4)(−1300002⋅380250000)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=−514⋅4⋅14958268416+1300004⋅4−735002⋅4⋅380250000+1300002⋅4⋅380250000
Simplify −514⋅4⋅14958268416+1300004⋅4−735002⋅4⋅380250000+1300002⋅4⋅380250000:−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
−514⋅4⋅14958268416+1300004⋅4−735002⋅4⋅380250000+1300002⋅4⋅380250000
Multiply the numbers: 4⋅14958268416=59833073664=−514⋅59833073664+1300004⋅4−735002⋅4⋅380250000+1300002⋅4⋅380250000
Multiply the numbers: 4⋅380250000=1521000000=−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
=−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
=−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
=28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
=28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​
u1,2​=2(−1300002−380250000)−2866500000±28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​
Separate the solutionsu1​=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​,u2​=2(−1300002−380250000)−2866500000−28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​
u=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​
u=2(−1300002−380250000)−2866500000−28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​:−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
2(−1300002−380250000)−2866500000−28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​
Apply the fraction rule: −b−a​=ba​−2866500000−28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​=−(1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
Apply the fraction rule: −ba​=−ba​=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
The solutions to the quadratic equation are:u=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​,u=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
Substitute back u=cos(x)cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​,cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​,cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​:x=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn,x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​
Apply trig inverse properties
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​
General solutions for cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn,x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn
x=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn,x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn
cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​:x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn,x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
Apply trig inverse properties
cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
General solutions for cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn,x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn,x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
Combine all the solutionsx=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn,x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn,x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn,x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 130000sin(x)+0.15130000cos(x)=73500
Remove the ones that don't agree with the equation.
Check the solution arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn:True
arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn
Plug in n=1arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1
For 130000sin(x)+0.15130000cos(x)=73500plug inx=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1130000sin(arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1)+0.15⋅130000cos(arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1)=73500
Refine73500=73500
⇒True
Check the solution −arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn:False
−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn
Plug in n=1−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1
For 130000sin(x)+0.15130000cos(x)=73500plug inx=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1130000sin(−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1)+0.15⋅130000cos(−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1)=73500
Refine−102241.68342…=73500
⇒False
Check the solution arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn:True
arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
Plug in n=1arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1
For 130000sin(x)+0.15130000cos(x)=73500plug inx=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1130000sin(arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1)+0.15⋅130000cos(arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1)=73500
Refine73500=73500
⇒True
Check the solution 2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn:False
2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
Plug in n=12π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1
For 130000sin(x)+0.15130000cos(x)=73500plug inx=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1130000sin(2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1)+0.15⋅130000cos(2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1)=73500
Refine−38288.87892…=73500
⇒False
x=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn,x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
Show solutions in decimal formx=2.39936…+2πn,x=0.44444…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(pi/2+x)-sin(pi/2+x)=0tan(θ+32)=cot(θ-20)sec^2(x)-1=tan(x)tan(x/4)=12sin(2x)=cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 73500=130000*sin(x)+0.15*130000*cos(x) ?

    The general solution for 73500=130000*sin(x)+0.15*130000*cos(x) is x=2.39936…+2pin,x=0.44444…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024