Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(θ+32)=cot(θ-20)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(θ+32∘)=cot(θ−20∘)

Solution

θ=39∘+180∘n,θ=129∘+180∘n
+1
Radians
θ=6013π​+πn,θ=6043π​+πn
Solution steps
tan(θ+32∘)=cot(θ−20∘)
Subtract cot(θ−20∘) from both sidestan(θ+32∘)−cot(θ−20∘)=0
Simplify tan(θ+32∘)−cot(θ−20∘):tan(4545θ+1440∘​)−cot(99θ−180∘​)
tan(θ+32∘)−cot(θ−20∘)
Join θ+32∘:4545θ+1440∘​
θ+32∘
Convert element to fraction: θ=45θ45​=45θ⋅45​+32∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=45θ⋅45+1440∘​
=tan(4545θ+1440∘​)−cot(θ−20∘)
Join θ−20∘:99θ−180∘​
θ−20∘
Convert element to fraction: θ=9θ9​=9θ⋅9​−20∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=9θ⋅9−180∘​
=tan(4545θ+1440∘​)−cot(99θ−180∘​)
tan(4545θ+1440∘​)−cot(99θ−180∘​)=0
Express with sin, cos
−cot(9−180∘+9θ​)+tan(4545θ+1440∘​)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−sin(9−180∘+9θ​)cos(9−180∘+9θ​)​+tan(4545θ+1440∘​)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−sin(9−180∘+9θ​)cos(9−180∘+9θ​)​+cos(4545θ+1440∘​)sin(4545θ+1440∘​)​
Simplify −sin(9−180∘+9θ​)cos(9−180∘+9θ​)​+cos(4545θ+1440∘​)sin(4545θ+1440∘​)​:sin(99θ−180∘​)cos(4545θ+1440∘​)−cos(9−180∘+9θ​)cos(4545θ+1440∘​)+sin(4545θ+1440∘​)sin(99θ−180∘​)​
−sin(9−180∘+9θ​)cos(9−180∘+9θ​)​+cos(4545θ+1440∘​)sin(4545θ+1440∘​)​
Least Common Multiplier of sin(9−180∘+9θ​),cos(4545θ+1440∘​):sin(99θ−180∘​)cos(4545θ+1440∘​)
sin(9−180∘+9θ​),cos(4545θ+1440∘​)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(9−180∘+9θ​) or cos(4545θ+1440∘​)=sin(99θ−180∘​)cos(4545θ+1440∘​)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(99θ−180∘​)cos(4545θ+1440∘​)
For sin(9−180∘+9θ​)cos(9−180∘+9θ​)​:multiply the denominator and numerator by cos(4545θ+1440∘​)sin(9−180∘+9θ​)cos(9−180∘+9θ​)​=sin(9−180∘+9θ​)cos(4545θ+1440∘​)cos(9−180∘+9θ​)cos(4545θ+1440∘​)​
For cos(4545θ+1440∘​)sin(4545θ+1440∘​)​:multiply the denominator and numerator by sin(99θ−180∘​)cos(4545θ+1440∘​)sin(4545θ+1440∘​)​=cos(4545θ+1440∘​)sin(99θ−180∘​)sin(4545θ+1440∘​)sin(99θ−180∘​)​
=−sin(9−180∘+9θ​)cos(4545θ+1440∘​)cos(9−180∘+9θ​)cos(4545θ+1440∘​)​+cos(4545θ+1440∘​)sin(99θ−180∘​)sin(4545θ+1440∘​)sin(99θ−180∘​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(99θ−180∘​)cos(4545θ+1440∘​)−cos(9−180∘+9θ​)cos(4545θ+1440∘​)+sin(4545θ+1440∘​)sin(99θ−180∘​)​
=sin(99θ−180∘​)cos(4545θ+1440∘​)−cos(9−180∘+9θ​)cos(4545θ+1440∘​)+sin(4545θ+1440∘​)sin(99θ−180∘​)​
cos(4545θ+1440∘​)sin(9−180∘+9θ​)−cos(9−180∘+9θ​)cos(4545θ+1440∘​)+sin(9−180∘+9θ​)sin(4545θ+1440∘​)​=0
g(x)f(x)​=0⇒f(x)=0−cos(9−180∘+9θ​)cos(4545θ+1440∘​)+sin(9−180∘+9θ​)sin(4545θ+1440∘​)=0
Rewrite using trig identities
−cos(9−180∘+9θ​)cos(4545θ+1440∘​)+sin(9−180∘+9θ​)sin(4545θ+1440∘​)
Use the Angle Sum identity: cos(s)cos(t)−sin(s)sin(t)=cos(s+t)−cos(s)cos(t)+sin(s)sin(t)=−cos(s+t)=−cos(9−180∘+9θ​+4545θ+1440∘​)
−cos(9−180∘+9θ​+4545θ+1440∘​)=0
Divide both sides by −1
−cos(9−180∘+9θ​+4545θ+1440∘​)=0
Divide both sides by −1−1−cos(9−180∘+9θ​+4545θ+1440∘​)​=−10​
Simplifycos(9−180∘+9θ​+4545θ+1440∘​)=0
cos(9−180∘+9θ​+4545θ+1440∘​)=0
General solutions for cos(9−180∘+9θ​+4545θ+1440∘​)=0
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
9−180∘+9θ​+4545θ+1440∘​=90∘+360∘n,9−180∘+9θ​+4545θ+1440∘​=270∘+360∘n
9−180∘+9θ​+4545θ+1440∘​=90∘+360∘n,9−180∘+9θ​+4545θ+1440∘​=270∘+360∘n
Solve 9−180∘+9θ​+4545θ+1440∘​=90∘+360∘n:θ=39∘+180∘n
9−180∘+9θ​+4545θ+1440∘​=90∘+360∘n
Multiply by LCM
9−180∘+9θ​+4545θ+1440∘​=90∘+360∘n
Find Least Common Multiplier of 9,45,2:90
9,45,2
Least Common Multiplier (LCM)
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Prime factorization of 45:3⋅3⋅5
45
45divides by 345=15⋅3=3⋅15
15divides by 315=5⋅3=3⋅3⋅5
3,5 are all prime numbers, therefore no further factorization is possible=3⋅3⋅5
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Compute a number comprised of factors that appear in at least one of the following:
9,45,2
=3⋅3⋅5⋅2
Multiply the numbers: 3⋅3⋅5⋅2=90=90
Multiply by LCM=909−180∘+9θ​⋅90+4545θ+1440∘​⋅90=90∘⋅90+360∘n⋅90
Simplify
9−180∘+9θ​⋅90+4545θ+1440∘​⋅90=90∘⋅90+360∘n⋅90
Simplify 9−180∘+9θ​⋅90:10(9θ−180∘)
9−180∘+9θ​⋅90
Multiply fractions: a⋅cb​=ca⋅b​=9(−180∘+9θ)⋅90​
Divide the numbers: 990​=10=10(9θ−180∘)
Simplify 4545θ+1440∘​⋅90:2(45θ+1440∘)
4545θ+1440∘​⋅90
Multiply fractions: a⋅cb​=ca⋅b​=45(45θ+1440∘)⋅90​
Divide the numbers: 4590​=2=2(45θ+1440∘)
Simplify 90∘⋅90:8100∘
90∘⋅90
Multiply fractions: a⋅cb​=ca⋅b​=8100∘
Divide the numbers: 290​=45=8100∘
Simplify 360∘n⋅90:32400∘n
360∘n⋅90
Multiply the numbers: 2⋅90=180=32400∘n
10(9θ−180∘)+2(45θ+1440∘)=8100∘+32400∘n
10(9θ−180∘)+2(45θ+1440∘)=8100∘+32400∘n
10(9θ−180∘)+2(45θ+1440∘)=8100∘+32400∘n
Expand 10(9θ−180∘)+2(45θ+1440∘):180θ+1080∘
10(9θ−180∘)+2(45θ+1440∘)
Expand 10(9θ−180∘):90θ−1800∘
10(9θ−180∘)
Apply the distributive law: a(b−c)=ab−aca=10,b=9θ,c=180∘=10⋅9θ−1800∘
Multiply the numbers: 10⋅9=90=90θ−1800∘
=90θ−1800∘+2(45θ+1440∘)
Expand 2(45θ+1440∘):90θ+2880∘
2(45θ+1440∘)
Apply the distributive law: a(b+c)=ab+aca=2,b=45θ,c=1440∘=2⋅45θ+2⋅1440∘
Simplify 2⋅45θ+2⋅1440∘:90θ+2880∘
2⋅45θ+2⋅1440∘
Multiply the numbers: 2⋅45=90=90θ+2⋅1440∘
Multiply the numbers: 2⋅8=16=90θ+2880∘
=90θ+2880∘
=90θ−1800∘+90θ+2880∘
Simplify 90θ−1800∘+90θ+2880∘:180θ+1080∘
90θ−1800∘+90θ+2880∘
Group like terms=90θ+90θ−1800∘+2880∘
Add similar elements: 90θ+90θ=180θ=180θ−1800∘+2880∘
Add similar elements: −1800∘+2880∘=1080∘=180θ+1080∘
=180θ+1080∘
180θ+1080∘=8100∘+32400∘n
Move 1080∘to the right side
180θ+1080∘=8100∘+32400∘n
Subtract 1080∘ from both sides180θ+1080∘−1080∘=8100∘+32400∘n−1080∘
Simplify180θ=7020∘+32400∘n
180θ=7020∘+32400∘n
Divide both sides by 180
180θ=7020∘+32400∘n
Divide both sides by 180180180θ​=39∘+18032400∘n​
Simplify
180180θ​=39∘+18032400∘n​
Simplify 180180θ​:θ
180180θ​
Divide the numbers: 180180​=1=θ
Simplify 39∘+18032400∘n​:39∘+180∘n
39∘+18032400∘n​
Cancel 39∘:39∘
39∘
Cancel the common factor: 3=39∘
=39∘+18032400∘n​
Divide the numbers: 180180​=1=39∘+180∘n
θ=39∘+180∘n
θ=39∘+180∘n
θ=39∘+180∘n
Solve 9−180∘+9θ​+4545θ+1440∘​=270∘+360∘n:θ=129∘+180∘n
9−180∘+9θ​+4545θ+1440∘​=270∘+360∘n
Multiply by LCM
9−180∘+9θ​+4545θ+1440∘​=270∘+360∘n
Find Least Common Multiplier of 9,45,2:90
9,45,2
Least Common Multiplier (LCM)
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Prime factorization of 45:3⋅3⋅5
45
45divides by 345=15⋅3=3⋅15
15divides by 315=5⋅3=3⋅3⋅5
3,5 are all prime numbers, therefore no further factorization is possible=3⋅3⋅5
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Compute a number comprised of factors that appear in at least one of the following:
9,45,2
=3⋅3⋅5⋅2
Multiply the numbers: 3⋅3⋅5⋅2=90=90
Multiply by LCM=909−180∘+9θ​⋅90+4545θ+1440∘​⋅90=270∘⋅90+360∘n⋅90
Simplify
9−180∘+9θ​⋅90+4545θ+1440∘​⋅90=270∘⋅90+360∘n⋅90
Simplify 9−180∘+9θ​⋅90:10(9θ−180∘)
9−180∘+9θ​⋅90
Multiply fractions: a⋅cb​=ca⋅b​=9(−180∘+9θ)⋅90​
Divide the numbers: 990​=10=10(9θ−180∘)
Simplify 4545θ+1440∘​⋅90:2(45θ+1440∘)
4545θ+1440∘​⋅90
Multiply fractions: a⋅cb​=ca⋅b​=45(45θ+1440∘)⋅90​
Divide the numbers: 4590​=2=2(45θ+1440∘)
Simplify 270∘⋅90:24300∘
270∘⋅90
Multiply fractions: a⋅cb​=ca⋅b​=24300∘
Multiply the numbers: 3⋅90=270=24300∘
Divide the numbers: 2270​=135=24300∘
Simplify 360∘n⋅90:32400∘n
360∘n⋅90
Multiply the numbers: 2⋅90=180=32400∘n
10(9θ−180∘)+2(45θ+1440∘)=24300∘+32400∘n
10(9θ−180∘)+2(45θ+1440∘)=24300∘+32400∘n
10(9θ−180∘)+2(45θ+1440∘)=24300∘+32400∘n
Expand 10(9θ−180∘)+2(45θ+1440∘):180θ+1080∘
10(9θ−180∘)+2(45θ+1440∘)
Expand 10(9θ−180∘):90θ−1800∘
10(9θ−180∘)
Apply the distributive law: a(b−c)=ab−aca=10,b=9θ,c=180∘=10⋅9θ−1800∘
Multiply the numbers: 10⋅9=90=90θ−1800∘
=90θ−1800∘+2(45θ+1440∘)
Expand 2(45θ+1440∘):90θ+2880∘
2(45θ+1440∘)
Apply the distributive law: a(b+c)=ab+aca=2,b=45θ,c=1440∘=2⋅45θ+2⋅1440∘
Simplify 2⋅45θ+2⋅1440∘:90θ+2880∘
2⋅45θ+2⋅1440∘
Multiply the numbers: 2⋅45=90=90θ+2⋅1440∘
Multiply the numbers: 2⋅8=16=90θ+2880∘
=90θ+2880∘
=90θ−1800∘+90θ+2880∘
Simplify 90θ−1800∘+90θ+2880∘:180θ+1080∘
90θ−1800∘+90θ+2880∘
Group like terms=90θ+90θ−1800∘+2880∘
Add similar elements: 90θ+90θ=180θ=180θ−1800∘+2880∘
Add similar elements: −1800∘+2880∘=1080∘=180θ+1080∘
=180θ+1080∘
180θ+1080∘=24300∘+32400∘n
Move 1080∘to the right side
180θ+1080∘=24300∘+32400∘n
Subtract 1080∘ from both sides180θ+1080∘−1080∘=24300∘+32400∘n−1080∘
Simplify180θ=23220∘+32400∘n
180θ=23220∘+32400∘n
Divide both sides by 180
180θ=23220∘+32400∘n
Divide both sides by 180180180θ​=129∘+18032400∘n​
Simplify
180180θ​=129∘+18032400∘n​
Simplify 180180θ​:θ
180180θ​
Divide the numbers: 180180​=1=θ
Simplify 129∘+18032400∘n​:129∘+180∘n
129∘+18032400∘n​
Cancel 129∘:129∘
129∘
Cancel the common factor: 3=129∘
=129∘+18032400∘n​
Divide the numbers: 180180​=1=129∘+180∘n
θ=129∘+180∘n
θ=129∘+180∘n
θ=129∘+180∘n
θ=39∘+180∘n,θ=129∘+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec^2(x)-1=tan(x)tan(x/4)=12sin(2x)=cos(x)sin(3x)=2sin(x)cot(θ)=-2/3

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(θ+32)=cot(θ-20) ?

    The general solution for tan(θ+32)=cot(θ-20) is θ=39+180n,θ=129+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024