Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

sin(3x)=2sin(x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

sin(3x)=2sin(x)

Lösung

x=2πn,x=π+2πn,x=67π​+2πn,x=611π​+2πn,x=6π​+2πn,x=65π​+2πn
+1
Grad
x=0∘+360∘n,x=180∘+360∘n,x=210∘+360∘n,x=330∘+360∘n,x=30∘+360∘n,x=150∘+360∘n
Schritte zur Lösung
sin(3x)=2sin(x)
Subtrahiere 2sin(x) von beiden Seitensin(3x)−2sin(x)=0
Umschreiben mit Hilfe von Trigonometrie-Identitäten
sin(3x)−2sin(x)
sin(3x)=3sin(x)−4sin3(x)
sin(3x)
Umschreiben mit Hilfe von Trigonometrie-Identitäten
sin(3x)
Schreibe um=sin(2x+x)
Benutze die Identität der Winkelsumme: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(2x)cos(x)+cos(2x)sin(x)
Verwende die Doppelwinkelidentität: sin(2x)=2sin(x)cos(x)=cos(2x)sin(x)+cos(x)2sin(x)cos(x)
Vereinfache cos(2x)sin(x)+cos(x)⋅2sin(x)cos(x):sin(x)cos(2x)+2cos2(x)sin(x)
cos(2x)sin(x)+cos(x)2sin(x)cos(x)
cos(x)⋅2sin(x)cos(x)=2cos2(x)sin(x)
cos(x)2sin(x)cos(x)
Wende Exponentenregel an: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2sin(x)cos1+1(x)
Addiere die Zahlen: 1+1=2=2sin(x)cos2(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
Verwende die Doppelwinkelidentität: cos(2x)=1−2sin2(x)=(1−2sin2(x))sin(x)+2cos2(x)sin(x)
Verwende die Pythagoreische Identität: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
Multipliziere aus (1−2sin2(x))sin(x)+2(1−sin2(x))sin(x):−4sin3(x)+3sin(x)
(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
=sin(x)(1−2sin2(x))+2sin(x)(1−sin2(x))
Multipliziere aus sin(x)(1−2sin2(x)):sin(x)−2sin3(x)
sin(x)(1−2sin2(x))
Wende das Distributivgesetz an: a(b−c)=ab−aca=sin(x),b=1,c=2sin2(x)=sin(x)1−sin(x)2sin2(x)
=1sin(x)−2sin2(x)sin(x)
Vereinfache 1⋅sin(x)−2sin2(x)sin(x):sin(x)−2sin3(x)
1sin(x)−2sin2(x)sin(x)
1⋅sin(x)=sin(x)
1sin(x)
Multipliziere: 1⋅sin(x)=sin(x)=sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Wende Exponentenregel an: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Addiere die Zahlen: 2+1=3=2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2(1−sin2(x))sin(x)
Multipliziere aus 2sin(x)(1−sin2(x)):2sin(x)−2sin3(x)
2sin(x)(1−sin2(x))
Wende das Distributivgesetz an: a(b−c)=ab−aca=2sin(x),b=1,c=sin2(x)=2sin(x)1−2sin(x)sin2(x)
=2⋅1sin(x)−2sin2(x)sin(x)
Vereinfache 2⋅1⋅sin(x)−2sin2(x)sin(x):2sin(x)−2sin3(x)
2⋅1sin(x)−2sin2(x)sin(x)
2⋅1⋅sin(x)=2sin(x)
2⋅1sin(x)
Multipliziere die Zahlen: 2⋅1=2=2sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Wende Exponentenregel an: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Addiere die Zahlen: 2+1=3=2sin3(x)
=2sin(x)−2sin3(x)
=2sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Vereinfache sin(x)−2sin3(x)+2sin(x)−2sin3(x):−4sin3(x)+3sin(x)
sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Fasse gleiche Terme zusammen=−2sin3(x)−2sin3(x)+sin(x)+2sin(x)
Addiere gleiche Elemente: −2sin3(x)−2sin3(x)=−4sin3(x)=−4sin3(x)+sin(x)+2sin(x)
Addiere gleiche Elemente: sin(x)+2sin(x)=3sin(x)=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=3sin(x)−4sin3(x)−2sin(x)
Vereinfache=sin(x)−4sin3(x)
sin(x)−4sin3(x)=0
Löse mit Substitution
sin(x)−4sin3(x)=0
Angenommen: sin(x)=uu−4u3=0
u−4u3=0:u=0,u=−21​,u=21​
u−4u3=0
Faktorisiere u−4u3:−u(2u+1)(2u−1)
u−4u3
Klammere gleiche Terme aus −u:−u(4u2−1)
−4u3+u
Wende Exponentenregel an: ab+c=abacu3=u2u=−4u2u+u
Klammere gleiche Terme aus −u=−u(4u2−1)
=−u(4u2−1)
Faktorisiere 4u2−1:(2u+1)(2u−1)
4u2−1
Schreibe 4u2−1um: (2u)2−12
4u2−1
Schreibe 4um: 22=22u2−1
Schreibe 1um: 12=22u2−12
Wende Exponentenregel an: ambm=(ab)m22u2=(2u)2=(2u)2−12
=(2u)2−12
Wende Formel zur Differenz von zwei Quadraten an:x2−y2=(x+y)(x−y)(2u)2−12=(2u+1)(2u−1)=(2u+1)(2u−1)
=−u(2u+1)(2u−1)
−u(2u+1)(2u−1)=0
Anwendung des Nullfaktorprinzips: Wenn ab=0dann a=0oder b=0u=0or2u+1=0or2u−1=0
Löse 2u+1=0:u=−21​
2u+1=0
Verschiebe 1auf die rechte Seite
2u+1=0
Subtrahiere 1 von beiden Seiten2u+1−1=0−1
Vereinfache2u=−1
2u=−1
Teile beide Seiten durch 2
2u=−1
Teile beide Seiten durch 222u​=2−1​
Vereinfacheu=−21​
u=−21​
Löse 2u−1=0:u=21​
2u−1=0
Verschiebe 1auf die rechte Seite
2u−1=0
Füge 1 zu beiden Seiten hinzu2u−1+1=0+1
Vereinfache2u=1
2u=1
Teile beide Seiten durch 2
2u=1
Teile beide Seiten durch 222u​=21​
Vereinfacheu=21​
u=21​
Die Lösungen sindu=0,u=−21​,u=21​
Setze in u=sin(x)einsin(x)=0,sin(x)=−21​,sin(x)=21​
sin(x)=0,sin(x)=−21​,sin(x)=21​
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
Allgemeine Lösung für sin(x)=0
sin(x) Periodizitätstabelle mit 2πn Zyklus:
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Löse x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=−21​:x=67π​+2πn,x=611π​+2πn
sin(x)=−21​
Allgemeine Lösung für sin(x)=−21​
sin(x) Periodizitätstabelle mit 2πn Zyklus:
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
Allgemeine Lösung für sin(x)=21​
sin(x) Periodizitätstabelle mit 2πn Zyklus:
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
Kombiniere alle Lösungenx=2πn,x=π+2πn,x=67π​+2πn,x=611π​+2πn,x=6π​+2πn,x=65π​+2πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

cot(θ)=-2/3cot(θ)=−32​cos(θ)= 1/7cos(θ)=71​sqrt(3)sin(2x)+3cos(2x)=03​sin(2x)+3cos(2x)=03cos(θ)=2sin^2(θ)3cos(θ)=2sin2(θ)sin(x)-sin(x)cos(x)=0sin(x)−sin(x)cos(x)=0
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024