Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(1-cos^2(x))=0.75sqrt(1-cos^2(y))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−cos2(x)​=0.751−cos2(y)​

Solution

x=arccos(0.5625cos2(y)+0.4375​)+2πn,x=−arccos(0.5625cos2(y)+0.4375​)+2πn,x=arccos(−0.5625cos2(y)+0.4375​)+2πn,x=−arccos(−0.5625cos2(y)+0.4375​)+2πn
Solution steps
1−cos2(x)​=0.751−cos2(y)​
Solve by substitution
1−cos2(x)​=0.751−cos2(y)​
Let: cos(x)=u1−u2​=0.751−cos2(y)​
1−u2​=0.751−cos2(y)​:u=0.5625cos2(y)+0.4375​,u=−0.5625cos2(y)+0.4375​
1−u2​=0.751−cos2(y)​
Square both sides:1−u2=0.5625−0.5625cos2(y)
1−u2​=0.751−cos2(y)​
(1−u2​)2=(0.751−cos2(y)​)2
Expand (1−u2​)2:1−u2
(1−u2​)2
Apply radical rule: a​=a21​=((1−u2)21​)2
Apply exponent rule: (ab)c=abc=(1−u2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−u2
Expand (0.751−cos2(y)​)2:0.5625−0.5625cos2(y)
(0.751−cos2(y)​)2
Apply exponent rule: (a⋅b)n=anbn=0.752(−cos2(y)+1​)2
(1−cos2(y)​)2:1−cos2(y)
Apply radical rule: a​=a21​=((1−cos2(y))21​)2
Apply exponent rule: (ab)c=abc=(1−cos2(y))21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−cos2(y)
=0.752(1−cos2(y))
0.752=0.5625=0.5625(−cos2(y)+1)
Apply the distributive law: a(b−c)=ab−aca=0.5625,b=1,c=cos2(y)=0.5625⋅1−0.5625cos2(y)
=1⋅0.5625−0.5625cos2(y)
Multiply the numbers: 1⋅0.5625=0.5625=0.5625−0.5625cos2(y)
1−u2=0.5625−0.5625cos2(y)
1−u2=0.5625−0.5625cos2(y)
Solve 1−u2=0.5625−0.5625cos2(y):u=0.5625cos2(y)+0.4375​,u=−0.5625cos2(y)+0.4375​
1−u2=0.5625−0.5625cos2(y)
Move 1to the right side
1−u2=0.5625−0.5625cos2(y)
Subtract 1 from both sides1−u2−1=0.5625−0.5625cos2(y)−1
Simplify−u2=−0.5625cos2(y)−0.4375
−u2=−0.5625cos2(y)−0.4375
Divide both sides by −1
−u2=−0.5625cos2(y)−0.4375
Divide both sides by −1−1−u2​=−−10.5625cos2(y)​−−10.4375​
Simplify
−1−u2​=−−10.5625cos2(y)​−−10.4375​
Simplify −1−u2​:u2
−1−u2​
Apply the fraction rule: −b−a​=ba​=1u2​
Apply rule 1a​=a=u2
Simplify −−10.5625cos2(y)​−−10.4375​:0.5625cos2(y)+0.4375
−−10.5625cos2(y)​−−10.4375​
Apply rule ca​±cb​=ca±b​=−1−0.5625cos2(y)−0.4375​
Apply the fraction rule: −ba​=−ba​=−1−0.5625cos2(y)−0.4375​
Apply rule 1a​=a=−(−0.5625cos2(y)−0.4375)
Distribute parentheses=−(−0.5625cos2(y))−(−0.4375)
Apply minus-plus rules−(−a)=a=0.5625cos2(y)+0.4375
u2=0.5625cos2(y)+0.4375
u2=0.5625cos2(y)+0.4375
u2=0.5625cos2(y)+0.4375
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=0.5625cos2(y)+0.4375​,u=−0.5625cos2(y)+0.4375​
u=0.5625cos2(y)+0.4375​,u=−0.5625cos2(y)+0.4375​
Verify Solutions:u=0.5625cos2(y)+0.4375​True,u=−0.5625cos2(y)+0.4375​True
Check the solutions by plugging them into 1−u2​=0.751−cos2(y)​
Remove the ones that don't agree with the equation.
Plug in u=0.5625cos2(y)+0.4375​:True
1−(0.5625cos2(y)+0.4375​)2​=0.751−cos2(y)​
Simplify 1−(0.5625cos2(y)+0.4375​)2​:−0.5625cos2(y)+0.5625​
1−(0.5625cos2(y)+0.4375​)2​
(0.5625cos2(y)+0.4375​)2=0.5625cos2(y)+0.4375
(0.5625cos2(y)+0.4375​)2
Apply radical rule: a​=a21​=((0.5625cos2(y)+0.4375)21​)2
Apply exponent rule: (ab)c=abc=(0.5625cos2(y)+0.4375)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=0.5625cos2(y)+0.4375
=1−(0.5625cos2(y)+0.4375)​
Expand 1−(0.5625cos2(y)+0.4375):−0.5625cos2(y)+0.5625
1−(0.5625cos2(y)+0.4375)
−(0.5625cos2(y)+0.4375):−0.5625cos2(y)−0.4375
−(0.5625cos2(y)+0.4375)
Distribute parentheses=−(0.5625cos2(y))−(0.4375)
Apply minus-plus rules+(−a)=−a=−0.5625cos2(y)−0.4375
=1−0.5625cos2(y)−0.4375
Subtract the numbers: 1−0.4375=0.5625=−0.5625cos2(y)+0.5625
=−0.5625cos2(y)+0.5625​
−0.5625cos2(y)+0.5625​=0.751−cos2(y)​
True
Plug in u=−0.5625cos2(y)+0.4375​:True
1−(−0.5625cos2(y)+0.4375​)2​=0.751−cos2(y)​
Simplify 1−(−0.5625cos2(y)+0.4375​)2​:−0.5625cos2(y)+0.5625​
1−(−0.5625cos2(y)+0.4375​)2​
(−0.5625cos2(y)+0.4375​)2=0.5625cos2(y)+0.4375
(−0.5625cos2(y)+0.4375​)2
Apply exponent rule: (−a)n=an,if n is even(−0.5625cos2(y)+0.4375​)2=(0.5625cos2(y)+0.4375​)2=(0.5625cos2(y)+0.4375​)2
Apply radical rule: a​=a21​=((0.5625cos2(y)+0.4375)21​)2
Apply exponent rule: (ab)c=abc=(0.5625cos2(y)+0.4375)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=0.5625cos2(y)+0.4375
=1−(0.5625cos2(y)+0.4375)​
Expand 1−(0.5625cos2(y)+0.4375):−0.5625cos2(y)+0.5625
1−(0.5625cos2(y)+0.4375)
−(0.5625cos2(y)+0.4375):−0.5625cos2(y)−0.4375
−(0.5625cos2(y)+0.4375)
Distribute parentheses=−(0.5625cos2(y))−(0.4375)
Apply minus-plus rules+(−a)=−a=−0.5625cos2(y)−0.4375
=1−0.5625cos2(y)−0.4375
Subtract the numbers: 1−0.4375=0.5625=−0.5625cos2(y)+0.5625
=−0.5625cos2(y)+0.5625​
−0.5625cos2(y)+0.5625​=0.751−cos2(y)​
True
The solutions areu=0.5625cos2(y)+0.4375​,u=−0.5625cos2(y)+0.4375​
Substitute back u=cos(x)cos(x)=0.5625cos2(y)+0.4375​,cos(x)=−0.5625cos2(y)+0.4375​
cos(x)=0.5625cos2(y)+0.4375​,cos(x)=−0.5625cos2(y)+0.4375​
cos(x)=0.5625cos2(y)+0.4375​:x=arccos(0.5625cos2(y)+0.4375​)+2πn,x=−arccos(0.5625cos2(y)+0.4375​)+2πn
cos(x)=0.5625cos2(y)+0.4375​
Apply trig inverse properties
cos(x)=0.5625cos2(y)+0.4375​
General solutions for cos(x)=0.5625cos2(y)+0.4375​cos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πnx=arccos(0.5625cos2(y)+0.4375​)+2πn,x=−arccos(0.5625cos2(y)+0.4375​)+2πn
x=arccos(0.5625cos2(y)+0.4375​)+2πn,x=−arccos(0.5625cos2(y)+0.4375​)+2πn
cos(x)=−0.5625cos2(y)+0.4375​:x=arccos(−0.5625cos2(y)+0.4375​)+2πn,x=−arccos(−0.5625cos2(y)+0.4375​)+2πn
cos(x)=−0.5625cos2(y)+0.4375​
Apply trig inverse properties
cos(x)=−0.5625cos2(y)+0.4375​
General solutions for cos(x)=−0.5625cos2(y)+0.4375​cos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πnx=arccos(−0.5625cos2(y)+0.4375​)+2πn,x=−arccos(−0.5625cos2(y)+0.4375​)+2πn
x=arccos(−0.5625cos2(y)+0.4375​)+2πn,x=−arccos(−0.5625cos2(y)+0.4375​)+2πn
Combine all the solutionsx=arccos(0.5625cos2(y)+0.4375​)+2πn,x=−arccos(0.5625cos2(y)+0.4375​)+2πn,x=arccos(−0.5625cos2(y)+0.4375​)+2πn,x=−arccos(−0.5625cos2(y)+0.4375​)+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec^2(x)-6tan(x)+4=01-cos(x)=2-2sin^2(x)-5tan(x)-12=tan(x)-85=sec^2(x)+3sin(θ)= 24/25

Frequently Asked Questions (FAQ)

  • What is the general solution for sqrt(1-cos^2(x))=0.75sqrt(1-cos^2(y)) ?

    The general solution for sqrt(1-cos^2(x))=0.75sqrt(1-cos^2(y)) is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024