Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(2θ)cos(θ)+cos(2θ)sin(θ)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(2θ)cos(θ)+cos(2θ)sin(θ)=0

Solution

θ=2πn,θ=π+2πn,θ=−1.15026…+πn,θ=1.15026…+πn
+1
Degrees
θ=0∘+360∘n,θ=180∘+360∘n,θ=−65.90515…∘+180∘n,θ=65.90515…∘+180∘n
Solution steps
2sin(2θ)cos(θ)+cos(2θ)sin(θ)=0
Rewrite using trig identities
cos(2θ)sin(θ)+2cos(θ)sin(2θ)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2θ)sin(θ)+2cos(θ)⋅2sin(θ)cos(θ)
2cos(θ)⋅2sin(θ)cos(θ)=4cos2(θ)sin(θ)
2cos(θ)⋅2sin(θ)cos(θ)
Multiply the numbers: 2⋅2=4=4cos(θ)sin(θ)cos(θ)
Apply exponent rule: ab⋅ac=ab+ccos(θ)cos(θ)=cos1+1(θ)=4sin(θ)cos1+1(θ)
Add the numbers: 1+1=2=4sin(θ)cos2(θ)
=cos(2θ)sin(θ)+4cos2(θ)sin(θ)
cos(2θ)sin(θ)+4cos2(θ)sin(θ)=0
Factor cos(2θ)sin(θ)+4cos2(θ)sin(θ):sin(θ)(cos(2θ)+4cos2(θ))
cos(2θ)sin(θ)+4cos2(θ)sin(θ)
Factor out common term sin(θ)=sin(θ)(cos(2θ)+4cos2(θ))
sin(θ)(cos(2θ)+4cos2(θ))=0
Solving each part separatelysin(θ)=0orcos(2θ)+4cos2(θ)=0
sin(θ)=0:θ=2πn,θ=π+2πn
sin(θ)=0
General solutions for sin(θ)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
θ=0+2πn,θ=π+2πn
θ=0+2πn,θ=π+2πn
Solve θ=0+2πn:θ=2πn
θ=0+2πn
0+2πn=2πnθ=2πn
θ=2πn,θ=π+2πn
cos(2θ)+4cos2(θ)=0:θ=arctan(−5​)+πn,θ=arctan(5​)+πn
cos(2θ)+4cos2(θ)=0
Rewrite using trig identities
cos(2θ)+4cos2(θ)
Use the Double Angle identity: cos(2x)=cos2(x)−sin2(x)=cos2(θ)−sin2(θ)+4cos2(θ)
Simplify=5cos2(θ)−sin2(θ)
−sin2(θ)+5cos2(θ)=0
Factor −sin2(θ)+5cos2(θ):(5​cos(θ)+sin(θ))(5​cos(θ)−sin(θ))
−sin2(θ)+5cos2(θ)
Rewrite 5cos2(θ)−sin2(θ) as (5​cos(θ))2−sin2(θ)
5cos2(θ)−sin2(θ)
Apply radical rule: a=(a​)25=(5​)2=(5​)2cos2(θ)−sin2(θ)
Apply exponent rule: ambm=(ab)m(5​)2cos2(θ)=(5​cos(θ))2=(5​cos(θ))2−sin2(θ)
=(5​cos(θ))2−sin2(θ)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(5​cos(θ))2−sin2(θ)=(5​cos(θ)+sin(θ))(5​cos(θ)−sin(θ))=(5​cos(θ)+sin(θ))(5​cos(θ)−sin(θ))
(5​cos(θ)+sin(θ))(5​cos(θ)−sin(θ))=0
Solving each part separately5​cos(θ)+sin(θ)=0or5​cos(θ)−sin(θ)=0
5​cos(θ)+sin(θ)=0:θ=arctan(−5​)+πn
5​cos(θ)+sin(θ)=0
Rewrite using trig identities
5​cos(θ)+sin(θ)=0
Divide both sides by cos(θ),cos(θ)=0cos(θ)5​cos(θ)+sin(θ)​=cos(θ)0​
Simplify5​+cos(θ)sin(θ)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)5​+tan(θ)=0
5​+tan(θ)=0
Move 5​to the right side
5​+tan(θ)=0
Subtract 5​ from both sides5​+tan(θ)−5​=0−5​
Simplifytan(θ)=−5​
tan(θ)=−5​
Apply trig inverse properties
tan(θ)=−5​
General solutions for tan(θ)=−5​tan(x)=−a⇒x=arctan(−a)+πnθ=arctan(−5​)+πn
θ=arctan(−5​)+πn
5​cos(θ)−sin(θ)=0:θ=arctan(5​)+πn
5​cos(θ)−sin(θ)=0
Rewrite using trig identities
5​cos(θ)−sin(θ)=0
Divide both sides by cos(θ),cos(θ)=0cos(θ)5​cos(θ)−sin(θ)​=cos(θ)0​
Simplify5​−cos(θ)sin(θ)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)5​−tan(θ)=0
5​−tan(θ)=0
Move 5​to the right side
5​−tan(θ)=0
Subtract 5​ from both sides5​−tan(θ)−5​=0−5​
Simplify−tan(θ)=−5​
−tan(θ)=−5​
Divide both sides by −1
−tan(θ)=−5​
Divide both sides by −1−1−tan(θ)​=−1−5​​
Simplifytan(θ)=5​
tan(θ)=5​
Apply trig inverse properties
tan(θ)=5​
General solutions for tan(θ)=5​tan(x)=a⇒x=arctan(a)+πnθ=arctan(5​)+πn
θ=arctan(5​)+πn
Combine all the solutionsθ=arctan(−5​)+πn,θ=arctan(5​)+πn
Combine all the solutionsθ=2πn,θ=π+2πn,θ=arctan(−5​)+πn,θ=arctan(5​)+πn
Show solutions in decimal formθ=2πn,θ=π+2πn,θ=−1.15026…+πn,θ=1.15026…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin^2(x)=2+cos(x),0<= x<= 2pisec(x)+sqrt(2)=0sin^2(x)+cos(x)-1=012tan(x)+5=5tan(x)+54cos(x)+3sin(x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024