Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4tanh(x)-1/(cosh(x))=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4tanh(x)−cosh(x)1​=1

Solution

x=ln(35​)
+1
Degrees
x=29.26815…∘
Solution steps
4tanh(x)−cosh(x)1​=1
Rewrite using trig identities
4tanh(x)−cosh(x)1​=1
Use the Hyperbolic identity: cosh(x)=2ex+e−x​4tanh(x)−2ex+e−x​1​=1
Use the Hyperbolic identity: tanh(x)=ex+e−xex−e−x​4⋅ex+e−xex−e−x​−2ex+e−x​1​=1
4⋅ex+e−xex−e−x​−2ex+e−x​1​=1
4⋅ex+e−xex−e−x​−2ex+e−x​1​=1:x=ln(35​)
4⋅ex+e−xex−e−x​−2ex+e−x​1​=1
Multiply both sides by 2ex+e−x​4⋅ex+e−xex−e−x​⋅2ex+e−x​−2ex+e−x​1​⋅2ex+e−x​=1⋅2ex+e−x​
Simplify2(ex−e−x)−1=2ex+e−x​
Apply exponent rules
2(ex−e−x)−1=2ex+e−x​
Apply exponent rule: abc=(ab)ce−x=(ex)−12(ex−(ex)−1)−1=2ex+(ex)−1​
2(ex−(ex)−1)−1=2ex+(ex)−1​
Rewrite the equation with ex=u2(u−(u)−1)−1=2u+(u)−1​
Solve 2(u−u−1)−1=2u+u−1​:u=35​,u=−1
2(u−u−1)−1=2u+u−1​
Refine2(u−u1​)−1=2uu2+1​
Multiply both sides by 2u
2(u−u1​)−1=2uu2+1​
Multiply both sides by 2u2(u−u1​)⋅2u−1⋅2u=2uu2+1​⋅2u
Simplify
2(u−u1​)⋅2u−1⋅2u=2uu2+1​⋅2u
Simplify 2(u−u1​)⋅2u:4u(u−u1​)
2(u−u1​)⋅2u
Multiply the numbers: 2⋅2=4=4u(u−u1​)
Simplify −1⋅2u:−2u
−1⋅2u
Multiply the numbers: 1⋅2=2=−2u
Simplify 2uu2+1​⋅2u:u2+1
2uu2+1​⋅2u
Multiply fractions: a⋅cb​=ca⋅b​=2u(u2+1)⋅2u​
Cancel the common factor: 2=u(u2+1)u​
Cancel the common factor: u=u2+1
4u(u−u1​)−2u=u2+1
4u(u−u1​)−2u=u2+1
4u(u−u1​)−2u=u2+1
Expand 4u(u−u1​)−2u:4u2−4−2u
4u(u−u1​)−2u
Expand 4u(u−u1​):4u2−4
4u(u−u1​)
Apply the distributive law: a(b−c)=ab−aca=4u,b=u,c=u1​=4uu−4uu1​
=4uu−4⋅u1​u
Simplify 4uu−4⋅u1​u:4u2−4
4uu−4⋅u1​u
4uu=4u2
4uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=4u1+1
Add the numbers: 1+1=2=4u2
4⋅u1​u=4
4⋅u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅4u​
Cancel the common factor: u=1⋅4
Multiply the numbers: 1⋅4=4=4
=4u2−4
=4u2−4
=4u2−4−2u
4u2−4−2u=u2+1
Move 4to the right side
4u2−4−2u=u2+1
Add 4 to both sides4u2−4−2u+4=u2+1+4
Simplify4u2−2u=u2+5
4u2−2u=u2+5
Solve 4u2−2u=u2+5:u=35​,u=−1
4u2−2u=u2+5
Move 5to the left side
4u2−2u=u2+5
Subtract 5 from both sides4u2−2u−5=u2+5−5
Simplify4u2−2u−5=u2
4u2−2u−5=u2
Move u2to the left side
4u2−2u−5=u2
Subtract u2 from both sides4u2−2u−5−u2=u2−u2
Simplify3u2−2u−5=0
3u2−2u−5=0
Solve with the quadratic formula
3u2−2u−5=0
Quadratic Equation Formula:
For a=3,b=−2,c=−5u1,2​=2⋅3−(−2)±(−2)2−4⋅3(−5)​​
u1,2​=2⋅3−(−2)±(−2)2−4⋅3(−5)​​
(−2)2−4⋅3(−5)​=8
(−2)2−4⋅3(−5)​
Apply rule −(−a)=a=(−2)2+4⋅3⋅5​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅3⋅5​
Multiply the numbers: 4⋅3⋅5=60=22+60​
22=4=4+60​
Add the numbers: 4+60=64=64​
Factor the number: 64=82=82​
Apply radical rule: 82​=8=8
u1,2​=2⋅3−(−2)±8​
Separate the solutionsu1​=2⋅3−(−2)+8​,u2​=2⋅3−(−2)−8​
u=2⋅3−(−2)+8​:35​
2⋅3−(−2)+8​
Apply rule −(−a)=a=2⋅32+8​
Add the numbers: 2+8=10=2⋅310​
Multiply the numbers: 2⋅3=6=610​
Cancel the common factor: 2=35​
u=2⋅3−(−2)−8​:−1
2⋅3−(−2)−8​
Apply rule −(−a)=a=2⋅32−8​
Subtract the numbers: 2−8=−6=2⋅3−6​
Multiply the numbers: 2⋅3=6=6−6​
Apply the fraction rule: b−a​=−ba​=−66​
Apply rule aa​=1=−1
The solutions to the quadratic equation are:u=35​,u=−1
u=35​,u=−1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 2(u−u−1)−1 and compare to zero
u=0
Take the denominator(s) of 2u+u−1​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=35​,u=−1
u=35​,u=−1
Substitute back u=ex,solve for x
Solve ex=35​:x=ln(35​)
ex=35​
Apply exponent rules
ex=35​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(35​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(35​)
x=ln(35​)
Solve ex=−1:No Solution for x∈R
ex=−1
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=ln(35​)
Verify Solutions:x=ln(35​)True
Check the solutions by plugging them into 4⋅ex+e−xex−e−x​−2ex+e−x​1​=1
Remove the ones that don't agree with the equation.
Plug in x=ln(35​):True
4⋅eln(35​)+e−ln(35​)eln(35​)−e−ln(35​)​−2eln(35​)+e−ln(35​)​1​=1
4⋅eln(35​)+e−ln(35​)eln(35​)−e−ln(35​)​−2eln(35​)+e−ln(35​)​1​=1
4⋅eln(35​)+e−ln(35​)eln(35​)−e−ln(35​)​−2eln(35​)+e−ln(35​)​1​
4⋅eln(35​)+e−ln(35​)eln(35​)−e−ln(35​)​=1732​
4⋅eln(35​)+e−ln(35​)eln(35​)−e−ln(35​)​
eln(35​)+e−ln(35​)eln(35​)−e−ln(35​)​=178​
eln(35​)+e−ln(35​)eln(35​)−e−ln(35​)​
eln(35​)=35​
eln(35​)
Apply log rule: aloga​(b)=b=35​
e−ln(35​)=53​
e−ln(35​)
Apply exponent rule: abc=(ab)c=(eln(35​))−1
Apply log rule: aloga​(b)=beln(35​)=35​=(35​)−1
Apply exponent rule: a−1=a1​=35​1​
Apply the fraction rule: cb​1​=bc​=53​
=35​+53​eln(35​)−e−ln(35​)​
eln(35​)=35​
eln(35​)
Apply log rule: aloga​(b)=b=35​
e−ln(35​)=53​
e−ln(35​)
Apply exponent rule: abc=(ab)c=(eln(35​))−1
Apply log rule: aloga​(b)=beln(35​)=35​=(35​)−1
Apply exponent rule: a−1=a1​=35​1​
Apply the fraction rule: cb​1​=bc​=53​
=35​+53​35​−53​​
Join 35​+53​:1534​
35​+53​
Least Common Multiplier of 3,5:15
3,5
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 5:5
5
5 is a prime number, therefore no factorization is possible=5
Multiply each factor the greatest number of times it occurs in either 3 or 5=3⋅5
Multiply the numbers: 3⋅5=15=15
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 15
For 35​:multiply the denominator and numerator by 535​=3⋅55⋅5​=1525​
For 53​:multiply the denominator and numerator by 353​=5⋅33⋅3​=159​
=1525​+159​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1525+9​
Add the numbers: 25+9=34=1534​
=1534​35​−53​​
Join 35​−53​:1516​
35​−53​
Least Common Multiplier of 3,5:15
3,5
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 5:5
5
5 is a prime number, therefore no factorization is possible=5
Multiply each factor the greatest number of times it occurs in either 3 or 5=3⋅5
Multiply the numbers: 3⋅5=15=15
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 15
For 35​:multiply the denominator and numerator by 535​=3⋅55⋅5​=1525​
For 53​:multiply the denominator and numerator by 353​=5⋅33⋅3​=159​
=1525​−159​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1525−9​
Subtract the numbers: 25−9=16=1516​
=1534​1516​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=15⋅3416⋅15​
Cancel the common factor: 15=3416​
Cancel the common factor: 2=178​
=4⋅178​
Multiply fractions: a⋅cb​=ca⋅b​=178⋅4​
Multiply the numbers: 8⋅4=32=1732​
2eln(35​)+e−ln(35​)​1​=1715​
2eln(35​)+e−ln(35​)​1​
Apply the fraction rule: cb​1​=bc​=eln(35​)+e−ln(35​)2​
eln(35​)=35​
eln(35​)
Apply log rule: aloga​(b)=b=35​
e−ln(35​)=53​
e−ln(35​)
Apply exponent rule: abc=(ab)c=(eln(35​))−1
Apply log rule: aloga​(b)=beln(35​)=35​=(35​)−1
Apply exponent rule: a−1=a1​=35​1​
Apply the fraction rule: cb​1​=bc​=53​
=35​+53​2​
Join 35​+53​:1534​
35​+53​
Least Common Multiplier of 3,5:15
3,5
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 5:5
5
5 is a prime number, therefore no factorization is possible=5
Multiply each factor the greatest number of times it occurs in either 3 or 5=3⋅5
Multiply the numbers: 3⋅5=15=15
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 15
For 35​:multiply the denominator and numerator by 535​=3⋅55⋅5​=1525​
For 53​:multiply the denominator and numerator by 353​=5⋅33⋅3​=159​
=1525​+159​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1525+9​
Add the numbers: 25+9=34=1534​
=1534​2​
Apply the fraction rule: cb​a​=ba⋅c​=342⋅15​
Multiply the numbers: 2⋅15=30=3430​
Cancel the common factor: 2=1715​
=1732​−1715​
Simplify
1732​−1715​
Apply rule ca​±cb​=ca±b​=1732−15​
Subtract the numbers: 32−15=17=1717​
Apply rule aa​=1=1
=1
1=1
True
The solution isx=ln(35​)
x=ln(35​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin(θ)cos(θ)=sin(θ)cos(θ)=-(sqrt(11))/6sin^2(x)-csc^2(x)=tan^2(x)-cot^2(x)sin(x)= 53/542sin^2(x)+sin(x)-3=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 4tanh(x)-1/(cosh(x))=1 ?

    The general solution for 4tanh(x)-1/(cosh(x))=1 is x=ln(5/3)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024