解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

3sin(2x-15)=cos(2x-15)

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

3sin(2x−15∘)=cos(2x−15∘)

解

x=20.58354…​+2180∘n​
+1
ラジアン
x=20.58354…​+2π​n
解答ステップ
3sin(2x−15∘)=cos(2x−15∘)
三角関数の公式を使用して書き換える
3sin(2x−15∘)=cos(2x−15∘)
三角関数の公式を使用して書き換える
sin(2x−15∘)
角の差の公式を使用する: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(2x)cos(15∘)−cos(2x)sin(15∘)
簡素化 sin(2x)cos(15∘)−cos(2x)sin(15∘):46​+2​​sin(2x)−46​−2​​cos(2x)
sin(2x)cos(15∘)−cos(2x)sin(15∘)
cos(15∘)=46​+2​​
cos(15∘)
三角関数の公式を使用して書き換える:cos(45∘)cos(30∘)+sin(45∘)sin(30∘)
cos(15∘)
cos(15∘)を以下として書く: cos(45∘−30∘)=cos(45∘−30∘)
角の差の公式を使用する: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(45∘)cos(30∘)+sin(45∘)sin(30∘)
=cos(45∘)cos(30∘)+sin(45∘)sin(30∘)
次の自明恒等式を使用する:cos(45∘)=22​​
cos(45∘)
cos(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
次の自明恒等式を使用する:cos(30∘)=23​​
cos(30∘)
cos(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
次の自明恒等式を使用する:sin(45∘)=22​​
sin(45∘)
sin(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
次の自明恒等式を使用する:sin(30∘)=21​
sin(30∘)
sin(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=22​​⋅23​​+22​​⋅21​
簡素化 22​​⋅23​​+22​​⋅21​:46​+2​​
22​​⋅23​​+22​​⋅21​
22​​⋅23​​=46​​
22​​⋅23​​
分数を乗じる: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
数を乗じる:2⋅2=4=42​3​​
簡素化 2​3​:6​
2​3​
累乗根の規則を適用する: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
数を乗じる:2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
分数を乗じる: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
改良=42​​
=46​​+42​​
規則を適用 ca​±cb​=ca±b​=46​+2​​
=46​+2​​
=46​+2​​sin(2x)−sin(15∘)cos(2x)
sin(15∘)=46​−2​​
sin(15∘)
三角関数の公式を使用して書き換える:sin(45∘)cos(30∘)−cos(45∘)sin(30∘)
sin(15∘)
sin(15∘)を以下として書く: sin(45∘−30∘)=sin(45∘−30∘)
角の差の公式を使用する: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(45∘)cos(30∘)−cos(45∘)sin(30∘)
=sin(45∘)cos(30∘)−cos(45∘)sin(30∘)
次の自明恒等式を使用する:sin(45∘)=22​​
sin(45∘)
sin(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
次の自明恒等式を使用する:cos(30∘)=23​​
cos(30∘)
cos(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
次の自明恒等式を使用する:cos(45∘)=22​​
cos(45∘)
cos(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
次の自明恒等式を使用する:sin(30∘)=21​
sin(30∘)
sin(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=22​​⋅23​​−22​​⋅21​
簡素化 22​​⋅23​​−22​​⋅21​:46​−2​​
22​​⋅23​​−22​​⋅21​
22​​⋅23​​=46​​
22​​⋅23​​
分数を乗じる: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
数を乗じる:2⋅2=4=42​3​​
簡素化 2​3​:6​
2​3​
累乗根の規則を適用する: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
数を乗じる:2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
分数を乗じる: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
改良=42​​
=46​​−42​​
規則を適用 ca​±cb​=ca±b​=46​−2​​
=46​−2​​
=46​+2​​sin(2x)−46​−2​​cos(2x)
=46​+2​​sin(2x)−46​−2​​cos(2x)
角の差の公式を使用する: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(2x)cos(15∘)+sin(2x)sin(15∘)
簡素化 cos(2x)cos(15∘)+sin(2x)sin(15∘):46​+2​​cos(2x)+46​−2​​sin(2x)
cos(2x)cos(15∘)+sin(2x)sin(15∘)
cos(15∘)=46​+2​​
cos(15∘)
三角関数の公式を使用して書き換える:cos(45∘)cos(30∘)+sin(45∘)sin(30∘)
cos(15∘)
cos(15∘)を以下として書く: cos(45∘−30∘)=cos(45∘−30∘)
角の差の公式を使用する: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(45∘)cos(30∘)+sin(45∘)sin(30∘)
=cos(45∘)cos(30∘)+sin(45∘)sin(30∘)
次の自明恒等式を使用する:cos(45∘)=22​​
cos(45∘)
cos(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
次の自明恒等式を使用する:cos(30∘)=23​​
cos(30∘)
cos(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
次の自明恒等式を使用する:sin(45∘)=22​​
sin(45∘)
sin(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
次の自明恒等式を使用する:sin(30∘)=21​
sin(30∘)
sin(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=22​​⋅23​​+22​​⋅21​
簡素化 22​​⋅23​​+22​​⋅21​:46​+2​​
22​​⋅23​​+22​​⋅21​
22​​⋅23​​=46​​
22​​⋅23​​
分数を乗じる: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
数を乗じる:2⋅2=4=42​3​​
簡素化 2​3​:6​
2​3​
累乗根の規則を適用する: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
数を乗じる:2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
分数を乗じる: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
改良=42​​
=46​​+42​​
規則を適用 ca​±cb​=ca±b​=46​+2​​
=46​+2​​
=46​+2​​cos(2x)+sin(15∘)sin(2x)
sin(15∘)=46​−2​​
sin(15∘)
三角関数の公式を使用して書き換える:sin(45∘)cos(30∘)−cos(45∘)sin(30∘)
sin(15∘)
sin(15∘)を以下として書く: sin(45∘−30∘)=sin(45∘−30∘)
角の差の公式を使用する: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(45∘)cos(30∘)−cos(45∘)sin(30∘)
=sin(45∘)cos(30∘)−cos(45∘)sin(30∘)
次の自明恒等式を使用する:sin(45∘)=22​​
sin(45∘)
sin(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
次の自明恒等式を使用する:cos(30∘)=23​​
cos(30∘)
cos(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
次の自明恒等式を使用する:cos(45∘)=22​​
cos(45∘)
cos(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
次の自明恒等式を使用する:sin(30∘)=21​
sin(30∘)
sin(x)360∘n 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=22​​⋅23​​−22​​⋅21​
簡素化 22​​⋅23​​−22​​⋅21​:46​−2​​
22​​⋅23​​−22​​⋅21​
22​​⋅23​​=46​​
22​​⋅23​​
分数を乗じる: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
数を乗じる:2⋅2=4=42​3​​
簡素化 2​3​:6​
2​3​
累乗根の規則を適用する: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
数を乗じる:2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
分数を乗じる: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
改良=42​​
=46​​−42​​
規則を適用 ca​±cb​=ca±b​=46​−2​​
=46​−2​​
=46​+2​​cos(2x)+46​−2​​sin(2x)
=46​+2​​cos(2x)+46​−2​​sin(2x)
3(46​+2​​sin(2x)−46​−2​​cos(2x))=46​+2​​cos(2x)+46​−2​​sin(2x)
3(46​+2​​sin(2x)−46​−2​​cos(2x))=46​+2​​cos(2x)+46​−2​​sin(2x)
両辺から46​+2​​cos(2x)+46​−2​​sin(2x)を引く2(2​−26​)cos(2x)+(22​+6​)sin(2x)​=0
g(x)f(x)​=0⇒f(x)=0(2​−26​)cos(2x)+(22​+6​)sin(2x)=0
三角関数の公式を使用して書き換える
(2​−26​)cos(2x)+(22​+6​)sin(2x)=0
cos(2x),cos(2x)=0で両辺を割るcos(2x)(2​−26​)cos(2x)+(22​+6​)sin(2x)​=cos(2x)0​
簡素化2​−26​+cos(2x)22​sin(2x)​+cos(2x)6​sin(2x)​=0
基本的な三角関数の公式を使用する: cos(x)sin(x)​=tan(x)2​−26​+(6​+22​)tan(2x)=0
2​−26​+(6​+22​)tan(2x)=0
2​を右側に移動します
2​−26​+(6​+22​)tan(2x)=0
両辺から2​を引く2​−26​+(6​+22​)tan(2x)−2​=0−2​
簡素化−26​+(6​+22​)tan(2x)=−2​
−26​+(6​+22​)tan(2x)=−2​
26​を右側に移動します
−26​+(6​+22​)tan(2x)=−2​
両辺に26​を足す−26​+(6​+22​)tan(2x)+26​=−2​+26​
簡素化(6​+22​)tan(2x)=−2​+26​
(6​+22​)tan(2x)=−2​+26​
以下で両辺を割る6​+22​
(6​+22​)tan(2x)=−2​+26​
以下で両辺を割る6​+22​6​+22​(6​+22​)tan(2x)​=−6​+22​2​​+6​+22​26​​
簡素化
6​+22​(6​+22​)tan(2x)​=−6​+22​2​​+6​+22​26​​
簡素化 6​+22​(6​+22​)tan(2x)​:tan(2x)
6​+22​(6​+22​)tan(2x)​
共通因数を約分する:6​+22​=tan(2x)
簡素化 −6​+22​2​​+6​+22​26​​:53​−8
−6​+22​2​​+6​+22​26​​
規則を適用 ca​±cb​=ca±b​=6​+22​−2​+26​​
共役で乗じる 6​−22​6​−22​​=(6​+22​)(6​−22​)(−2​+26​)(6​−22​)​
(−2​+26​)(6​−22​)=16−103​
(−2​+26​)(6​−22​)
FOIL メソッドを適用する: (a+b)(c+d)=ac+ad+bc+bda=−2​,b=26​,c=6​,d=−22​=(−2​)6​+(−2​)(−22​)+26​6​+26​(−22​)
マイナス・プラスの規則を適用する+(−a)=−a,(−a)(−b)=ab=−2​6​+22​2​+26​6​−2⋅26​2​
簡素化 −2​6​+22​2​+26​6​−2⋅26​2​:16−103​
−2​6​+22​2​+26​6​−2⋅26​2​
2​6​=23​
2​6​
整数を因数分解する 6=2⋅3=2​2⋅3​
累乗根の規則を適用する: nab​=na​nb​2⋅3​=2​3​=2​2​3​
累乗根の規則を適用する: a​a​=a2​2​=2=23​
22​2​=4
22​2​
累乗根の規則を適用する: a​a​=a2​2​=2=2⋅2
数を乗じる:2⋅2=4=4
26​6​=12
26​6​
累乗根の規則を適用する: a​a​=a6​6​=6=2⋅6
数を乗じる:2⋅6=12=12
2⋅26​2​=83​
2⋅26​2​
整数を因数分解する 6=2⋅3=2⋅22⋅3​2​
累乗根の規則を適用する: nab​=na​nb​2⋅3​=2​3​=2⋅22​3​2​
指数の規則を適用する: ab⋅ac=ab+c2⋅2=21+1=21+12​3​2​
数を足す:1+1=2=222​3​2​
累乗根の規則を適用する: a​a​=a2​2​=2=22⋅23​
指数の規則を適用する: ab⋅ac=ab+c22⋅2=22+1=3​⋅22+1
数を足す:2+1=3=3​⋅23
23=8=83​
=−23​+4+12−83​
条件のようなグループ=−23​+4+12−83​
類似した元を足す:−23​−83​=−103​=−103​+4+12
数を足す:4+12=16=16−103​
=16−103​
(6​+22​)(6​−22​)=−2
(6​+22​)(6​−22​)
22​=223​
22​
指数の規則を適用する: ab⋅ac=ab+c22​=2⋅221​=21+21​=21+21​
結合 1+21​:23​
1+21​
元を分数に変換する: 1=21⋅2​=21⋅2​+21​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=21⋅2+1​
1⋅2+1=3
1⋅2+1
数を乗じる:1⋅2=2=2+1
数を足す:2+1=3=3
=23​
=223​
=(6​+223​)(6​−22​)
22​=223​
22​
指数の規則を適用する: ab⋅ac=ab+c22​=2⋅221​=21+21​=21+21​
結合 1+21​:23​
1+21​
元を分数に変換する: 1=21⋅2​=21⋅2​+21​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=21⋅2+1​
1⋅2+1=3
1⋅2+1
数を乗じる:1⋅2=2=2+1
数を足す:2+1=3=3
=23​
=223​
=(6​+223​)(6​−223​)
2乗の差の公式を適用する:(a+b)(a−b)=a2−b2a=6​,b=223​=(6​)2−(223​)2
簡素化 (6​)2−(223​)2:−2
(6​)2−(223​)2
(6​)2=6
(6​)2
累乗根の規則を適用する: a​=a21​=(621​)2
指数の規則を適用する: (ab)c=abc=621​⋅2
21​⋅2=1
21​⋅2
分数を乗じる: a⋅cb​=ca⋅b​=21⋅2​
共通因数を約分する:2=1
=6
(223​)2=8
(223​)2
指数の規則を適用する: (ab)c=abc=223​⋅2
23​⋅2=3
23​⋅2
分数を乗じる: a⋅cb​=ca⋅b​=23⋅2​
共通因数を約分する:2=3
=23
23=8=8
=6−8
数を引く:6−8=−2=−2
=−2
=−216−103​​
分数の規則を適用する: −b−a​=ba​16−103​=−(103​−16)=2103​−16​
因数 103​−16:2(53​−8)
103​−16
書き換え=2⋅53​−2⋅8
共通項をくくり出す 2=2(53​−8)
=22(53​−8)​
数を割る:22​=1=53​−8
tan(2x)=53​−8
tan(2x)=53​−8
tan(2x)=53​−8
三角関数の逆数プロパティを適用する
tan(2x)=53​−8
以下の一般解 tan(2x)=53​−8tan(x)=a⇒x=arctan(a)+180∘n2x=arctan(53​−8)+180∘n
2x=arctan(53​−8)+180∘n
解く 2x=arctan(53​−8)+180∘n:x=2arctan(53​−8)​+2180∘n​
2x=arctan(53​−8)+180∘n
以下で両辺を割る2
2x=arctan(53​−8)+180∘n
以下で両辺を割る222x​=2arctan(53​−8)​+2180∘n​
簡素化x=2arctan(53​−8)​+2180∘n​
x=2arctan(53​−8)​+2180∘n​
x=2arctan(53​−8)​+2180∘n​
10進法形式で解を証明するx=20.58354…​+2180∘n​

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

2sin^2(x)+sin(x)=0,0<= x<= 2pi2sin2(x)+sin(x)=0,0≤x≤2π6cos^2(x)-5cos(x)=46cos2(x)−5cos(x)=4cos(20)=sin(x)cos(20∘)=sin(x)sec(2x)=1sec(2x)=12cos^2(x)+sin^2(x)=02cos2(x)+sin2(x)=0
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024