Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cosh^2(x)-5sinh(x)=5

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cosh2(x)−5sinh(x)=5

Solution

x=ln(0.61803…),x=ln(6.16227…)
+1
Degrees
x=−27.57140…∘,x=104.18930…∘
Solution steps
2cosh2(x)−5sinh(x)=5
Rewrite using trig identities
2cosh2(x)−5sinh(x)=5
Use the Hyperbolic identity: sinh(x)=2ex−e−x​2cosh2(x)−5⋅2ex−e−x​=5
Use the Hyperbolic identity: cosh(x)=2ex+e−x​2(2ex+e−x​)2−5⋅2ex−e−x​=5
2(2ex+e−x​)2−5⋅2ex−e−x​=5
2(2ex+e−x​)2−5⋅2ex−e−x​=5:x=ln(0.61803…),x=ln(6.16227…)
2(2ex+e−x​)2−5⋅2ex−e−x​=5
Apply exponent rules
2(2ex+e−x​)2−5⋅2ex−e−x​=5
Apply exponent rule: abc=(ab)ce−x=(ex)−12(2ex+(ex)−1​)2−5⋅2ex−(ex)−1​=5
2(2ex+(ex)−1​)2−5⋅2ex−(ex)−1​=5
Rewrite the equation with ex=u2(2u+(u)−1​)2−5⋅2u−(u)−1​=5
Solve 2(2u+u−1​)2−5⋅2u−u−1​=5:u≈−0.16227…,u≈0.61803…,u≈−1.61803…,u≈6.16227…
2(2u+u−1​)2−5⋅2u−u−1​=5
Refine2u2(u2+1)2​−2u5(u2−1)​=5
Multiply by LCM
2u2(u2+1)2​−2u5(u2−1)​=5
Find Least Common Multiplier of 2u2,2u:2u2
2u2,2u
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,2:2
2,2
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 2 or 2=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear either in 2u2 or 2u=2u2
Multiply by LCM=2u22u2(u2+1)2​⋅2u2−2u5(u2−1)​⋅2u2=5⋅2u2
Simplify
2u2(u2+1)2​⋅2u2−2u5(u2−1)​⋅2u2=5⋅2u2
Simplify 2u2(u2+1)2​⋅2u2:(u2+1)2
2u2(u2+1)2​⋅2u2
Multiply fractions: a⋅cb​=ca⋅b​=2u2(u2+1)2⋅2u2​
Cancel the common factor: 2=u2(u2+1)2u2​
Cancel the common factor: u2=(u2+1)2
Simplify −2u5(u2−1)​⋅2u2:−5u(u2−1)
−2u5(u2−1)​⋅2u2
Multiply fractions: a⋅cb​=ca⋅b​=−2u5(u2−1)⋅2u2​
Cancel the common factor: 2=−u5(u2−1)u2​
Cancel the common factor: u=−5u(u2−1)
Simplify 5⋅2u2:10u2
5⋅2u2
Multiply the numbers: 5⋅2=10=10u2
(u2+1)2−5u(u2−1)=10u2
(u2+1)2−5u(u2−1)=10u2
(u2+1)2−5u(u2−1)=10u2
Solve (u2+1)2−5u(u2−1)=10u2:u≈−0.16227…,u≈0.61803…,u≈−1.61803…,u≈6.16227…
(u2+1)2−5u(u2−1)=10u2
Expand (u2+1)2−5u(u2−1):u4+2u2+1−5u3+5u
(u2+1)2−5u(u2−1)
(u2+1)2:u4+2u2+1
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u2,b=1
=(u2)2+2u2⋅1+12
Simplify (u2)2+2u2⋅1+12:u4+2u2+1
(u2)2+2u2⋅1+12
Apply rule 1a=112=1=(u2)2+2⋅1⋅u2+1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiply the numbers: 2⋅1=2=2u2
=u4+2u2+1
=u4+2u2+1
=u4+2u2+1−5u(u2−1)
Expand −5u(u2−1):−5u3+5u
−5u(u2−1)
Apply the distributive law: a(b−c)=ab−aca=−5u,b=u2,c=1=−5uu2−(−5u)⋅1
Apply minus-plus rules−(−a)=a=−5u2u+5⋅1⋅u
Simplify −5u2u+5⋅1⋅u:−5u3+5u
−5u2u+5⋅1⋅u
5u2u=5u3
5u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=5u2+1
Add the numbers: 2+1=3=5u3
5⋅1⋅u=5u
5⋅1⋅u
Multiply the numbers: 5⋅1=5=5u
=−5u3+5u
=−5u3+5u
=u4+2u2+1−5u3+5u
u4+2u2+1−5u3+5u=10u2
Move 10u2to the left side
u4+2u2+1−5u3+5u=10u2
Subtract 10u2 from both sidesu4+2u2+1−5u3+5u−10u2=10u2−10u2
Simplifyu4−5u3−8u2+5u+1=0
u4−5u3−8u2+5u+1=0
Find one solution for u4−5u3−8u2+5u+1=0 using Newton-Raphson:u≈−0.16227…
u4−5u3−8u2+5u+1=0
Newton-Raphson Approximation Definition
f(u)=u4−5u3−8u2+5u+1
Find f′(u):4u3−15u2−16u+5
dud​(u4−5u3−8u2+5u+1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u4)−dud​(5u3)−dud​(8u2)+dud​(5u)+dud​(1)
dud​(u4)=4u3
dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4u4−1
Simplify=4u3
dud​(5u3)=15u2
dud​(5u3)
Take the constant out: (a⋅f)′=a⋅f′=5dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=5⋅3u3−1
Simplify=15u2
dud​(8u2)=16u
dud​(8u2)
Take the constant out: (a⋅f)′=a⋅f′=8dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=8⋅2u2−1
Simplify=16u
dud​(5u)=5
dud​(5u)
Take the constant out: (a⋅f)′=a⋅f′=5dudu​
Apply the common derivative: dudu​=1=5⋅1
Simplify=5
dud​(1)=0
dud​(1)
Derivative of a constant: dxd​(a)=0=0
=4u3−15u2−16u+5+0
Simplify=4u3−15u2−16u+5
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=−0.2:Δu1​=0.2
f(u0​)=04−5⋅03−8⋅02+5⋅0+1=1f′(u0​)=4⋅03−15⋅02−16⋅0+5=5u1​=−0.2
Δu1​=∣−0.2−0∣=0.2Δu1​=0.2
u2​=−0.16321…:Δu2​=0.03678…
f(u1​)=(−0.2)4−5(−0.2)3−8(−0.2)2+5(−0.2)+1=−0.2784f′(u1​)=4(−0.2)3−15(−0.2)2−16(−0.2)+5=7.568u2​=−0.16321…
Δu2​=∣−0.16321…−(−0.2)∣=0.03678…Δu2​=0.03678…
u3​=−0.16227…:Δu3​=0.00093…
f(u2​)=(−0.16321…)4−5(−0.16321…)3−8(−0.16321…)2+5(−0.16321…)+1=−0.00672…f′(u2​)=4(−0.16321…)3−15(−0.16321…)2−16(−0.16321…)+5=7.19444…u3​=−0.16227…
Δu3​=∣−0.16227…−(−0.16321…)∣=0.00093…Δu3​=0.00093…
u4​=−0.16227…:Δu4​=6.57063E−7
f(u3​)=(−0.16227…)4−5(−0.16227…)3−8(−0.16227…)2+5(−0.16227…)+1=−4.72057E−6f′(u3​)=4(−0.16227…)3−15(−0.16227…)2−16(−0.16227…)+5=7.18434…u4​=−0.16227…
Δu4​=∣−0.16227…−(−0.16227…)∣=6.57063E−7Δu4​=6.57063E−7
u≈−0.16227…
Apply long division:u+0.16227…u4−5u3−8u2+5u+1​=u3−5.16227…u2−7.16227…u+6.16227…
u3−5.16227…u2−7.16227…u+6.16227…≈0
Find one solution for u3−5.16227…u2−7.16227…u+6.16227…=0 using Newton-Raphson:u≈0.61803…
u3−5.16227…u2−7.16227…u+6.16227…=0
Newton-Raphson Approximation Definition
f(u)=u3−5.16227…u2−7.16227…u+6.16227…
Find f′(u):3u2−10.32455…u−7.16227…
dud​(u3−5.16227…u2−7.16227…u+6.16227…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u3)−dud​(5.16227…u2)−dud​(7.16227…u)+dud​(6.16227…)
dud​(u3)=3u2
dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3u3−1
Simplify=3u2
dud​(5.16227…u2)=10.32455…u
dud​(5.16227…u2)
Take the constant out: (a⋅f)′=a⋅f′=5.16227…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=5.16227…⋅2u2−1
Simplify=10.32455…u
dud​(7.16227…u)=7.16227…
dud​(7.16227…u)
Take the constant out: (a⋅f)′=a⋅f′=7.16227…dudu​
Apply the common derivative: dudu​=1=7.16227…⋅1
Simplify=7.16227…
dud​(6.16227…)=0
dud​(6.16227…)
Derivative of a constant: dxd​(a)=0=0
=3u2−10.32455…u−7.16227…+0
Simplify=3u2−10.32455…u−7.16227…
Let u0​=1Compute un+1​ until Δun+1​<0.000001
u1​=0.64365…:Δu1​=0.35634…
f(u0​)=13−5.16227…⋅12−7.16227…⋅1+6.16227…=−5.16227…f′(u0​)=3⋅12−10.32455…⋅1−7.16227…=−14.48683…u1​=0.64365…
Δu1​=∣0.64365…−1∣=0.35634…Δu1​=0.35634…
u2​=0.61820…:Δu2​=0.02545…
f(u1​)=0.64365…3−5.16227…⋅0.64365…2−7.16227…⋅0.64365…+6.16227…=−0.31981…f′(u1​)=3⋅0.64365…2−10.32455…⋅0.64365…−7.16227…=−12.56486…u2​=0.61820…
Δu2​=∣0.61820…−0.64365…∣=0.02545…Δu2​=0.02545…
u3​=0.61803…:Δu3​=0.00017…
f(u2​)=0.61820…3−5.16227…⋅0.61820…2−7.16227…⋅0.61820…+6.16227…=−0.00210…f′(u2​)=3⋅0.61820…2−10.32455…⋅0.61820…−7.16227…=−12.39843…u3​=0.61803…
Δu3​=∣0.61803…−0.61820…∣=0.00017…Δu3​=0.00017…
u4​=0.61803…:Δu4​=7.7271E−9
f(u3​)=0.61803…3−5.16227…⋅0.61803…2−7.16227…⋅0.61803…+6.16227…=−9.57952E−8f′(u3​)=3⋅0.61803…2−10.32455…⋅0.61803…−7.16227…=−12.39730…u4​=0.61803…
Δu4​=∣0.61803…−0.61803…∣=7.7271E−9Δu4​=7.7271E−9
u≈0.61803…
Apply long division:u−0.61803…u3−5.16227…u2−7.16227…u+6.16227…​=u2−4.54424…u−9.97077…
u2−4.54424…u−9.97077…≈0
Find one solution for u2−4.54424…u−9.97077…=0 using Newton-Raphson:u≈−1.61803…
u2−4.54424…u−9.97077…=0
Newton-Raphson Approximation Definition
f(u)=u2−4.54424…u−9.97077…
Find f′(u):2u−4.54424…
dud​(u2−4.54424…u−9.97077…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u2)−dud​(4.54424…u)−dud​(9.97077…)
dud​(u2)=2u
dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2u2−1
Simplify=2u
dud​(4.54424…u)=4.54424…
dud​(4.54424…u)
Take the constant out: (a⋅f)′=a⋅f′=4.54424…dudu​
Apply the common derivative: dudu​=1=4.54424…⋅1
Simplify=4.54424…
dud​(9.97077…)=0
dud​(9.97077…)
Derivative of a constant: dxd​(a)=0=0
=2u−4.54424…−0
Simplify=2u−4.54424…
Let u0​=−2Compute un+1​ until Δun+1​<0.000001
u1​=−1.63510…:Δu1​=0.36489…
f(u0​)=(−2)2−4.54424…(−2)−9.97077…=3.11771…f′(u0​)=2(−2)−4.54424…=−8.54424…u1​=−1.63510…
Δu1​=∣−1.63510…−(−2)∣=0.36489…Δu1​=0.36489…
u2​=−1.61807…:Δu2​=0.01703…
f(u1​)=(−1.63510…)2−4.54424…(−1.63510…)−9.97077…=0.13314…f′(u1​)=2(−1.63510…)−4.54424…=−7.81446…u2​=−1.61807…
Δu2​=∣−1.61807…−(−1.63510…)∣=0.01703…Δu2​=0.01703…
u3​=−1.61803…:Δu3​=0.00003…
f(u2​)=(−1.61807…)2−4.54424…(−1.61807…)−9.97077…=0.00029…f′(u2​)=2(−1.61807…)−4.54424…=−7.78038…u3​=−1.61803…
Δu3​=∣−1.61803…−(−1.61807…)∣=0.00003…Δu3​=0.00003…
u4​=−1.61803…:Δu4​=1.78938E−10
f(u3​)=(−1.61803…)2−4.54424…(−1.61803…)−9.97077…=1.3922E−9f′(u3​)=2(−1.61803…)−4.54424…=−7.78031…u4​=−1.61803…
Δu4​=∣−1.61803…−(−1.61803…)∣=1.78938E−10Δu4​=1.78938E−10
u≈−1.61803…
Apply long division:u+1.61803…u2−4.54424…u−9.97077…​=u−6.16227…
u−6.16227…≈0
u≈6.16227…
The solutions areu≈−0.16227…,u≈0.61803…,u≈−1.61803…,u≈6.16227…
u≈−0.16227…,u≈0.61803…,u≈−1.61803…,u≈6.16227…
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 2(2u+u−1​)2−52u−u−1​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u≈−0.16227…,u≈0.61803…,u≈−1.61803…,u≈6.16227…
u≈−0.16227…,u≈0.61803…,u≈−1.61803…,u≈6.16227…
Substitute back u=ex,solve for x
Solve ex=−0.16227…:No Solution for x∈R
ex=−0.16227…
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=0.61803…:x=ln(0.61803…)
ex=0.61803…
Apply exponent rules
ex=0.61803…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(0.61803…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(0.61803…)
x=ln(0.61803…)
Solve ex=−1.61803…:No Solution for x∈R
ex=−1.61803…
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=6.16227…:x=ln(6.16227…)
ex=6.16227…
Apply exponent rules
ex=6.16227…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(6.16227…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(6.16227…)
x=ln(6.16227…)
x=ln(0.61803…),x=ln(6.16227…)
x=ln(0.61803…),x=ln(6.16227…)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

10+5cos(2x)=15cos(x)solvefor y,x=cos(2y)tan(x)= a/bsolvefor x,arcsin(3x-4y)= pi/2sin(x)a= pi/3

Frequently Asked Questions (FAQ)

  • What is the general solution for 2cosh^2(x)-5sinh(x)=5 ?

    The general solution for 2cosh^2(x)-5sinh(x)=5 is x=ln(0.61803…),x=ln(6.16227…)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024