Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(θ)=-(sqrt(5))/3 cos(2θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(θ)=−35​​cos(2θ)

Solution

θ=−0.46364…+2πn,θ=π+0.46364…+2πn
+1
Degrees
θ=−26.56505…∘+360∘n,θ=206.56505…∘+360∘n
Solution steps
sin(θ)=−35​​cos(2θ)
Subtract −35​​cos(2θ) from both sidessin(θ)+35​​cos(2θ)=0
Simplify sin(θ)+35​​cos(2θ):33sin(θ)+5​cos(2θ)​
sin(θ)+35​​cos(2θ)
Multiply 35​​cos(2θ):35​cos(2θ)​
35​​cos(2θ)
Multiply fractions: a⋅cb​=ca⋅b​=35​cos(2θ)​
=sin(θ)+35​cos(2θ)​
Convert element to fraction: sin(θ)=3sin(θ)3​=3sin(θ)⋅3​+35​cos(2θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3sin(θ)⋅3+5​cos(2θ)​
33sin(θ)+5​cos(2θ)​=0
g(x)f(x)​=0⇒f(x)=03sin(θ)+5​cos(2θ)=0
Rewrite using trig identities
3sin(θ)+cos(2θ)5​
Use the Double Angle identity: cos(2x)=1−2sin2(x)=3sin(θ)+5​(1−2sin2(θ))
(1−2sin2(θ))5​+3sin(θ)=0
Solve by substitution
(1−2sin2(θ))5​+3sin(θ)=0
Let: sin(θ)=u(1−2u2)5​+3u=0
(1−2u2)5​+3u=0:u=−55​​,u=25​​
(1−2u2)5​+3u=0
Expand (1−2u2)5​+3u:5​−25​u2+3u
(1−2u2)5​+3u
=5​(1−2u2)+3u
Expand 5​(1−2u2):5​−25​u2
5​(1−2u2)
Apply the distributive law: a(b−c)=ab−aca=5​,b=1,c=2u2=5​⋅1−5​⋅2u2
=1⋅5​−25​u2
Multiply: 1⋅5​=5​=5​−25​u2
=5​−25​u2+3u
5​−25​u2+3u=0
Write in the standard form ax2+bx+c=0−25​u2+3u+5​=0
Solve with the quadratic formula
−25​u2+3u+5​=0
Quadratic Equation Formula:
For a=−25​,b=3,c=5​u1,2​=2(−25​)−3±32−4(−25​)5​​​
u1,2​=2(−25​)−3±32−4(−25​)5​​​
32−4(−25​)5​​=7
32−4(−25​)5​​
Apply rule −(−a)=a=32+4⋅25​5​​
4⋅25​5​=40
4⋅25​5​
Multiply the numbers: 4⋅2=8=85​5​
Apply radical rule: a​a​=a5​5​=5=8⋅5
Multiply the numbers: 8⋅5=40=40
=32+40​
32=9=9+40​
Add the numbers: 9+40=49=49​
Factor the number: 49=72=72​
Apply radical rule: 72​=7=7
u1,2​=2(−25​)−3±7​
Separate the solutionsu1​=2(−25​)−3+7​,u2​=2(−25​)−3−7​
u=2(−25​)−3+7​:−55​​
2(−25​)−3+7​
Remove parentheses: (−a)=−a=−2⋅25​−3+7​
Add/Subtract the numbers: −3+7=4=−2⋅25​4​
Multiply the numbers: 2⋅2=4=−45​4​
Apply the fraction rule: −ba​=−ba​=−45​4​
Divide the numbers: 44​=1=−5​1​
Rationalize −5​1​:−55​​
−5​1​
Multiply by the conjugate 5​5​​=−5​5​1⋅5​​
1⋅5​=5​
5​5​=5
5​5​
Apply radical rule: a​a​=a5​5​=5=5
=−55​​
=−55​​
u=2(−25​)−3−7​:25​​
2(−25​)−3−7​
Remove parentheses: (−a)=−a=−2⋅25​−3−7​
Subtract the numbers: −3−7=−10=−2⋅25​−10​
Multiply the numbers: 2⋅2=4=−45​−10​
Apply the fraction rule: −b−a​=ba​=45​10​
Cancel the common factor: 2=25​5​
Apply radical rule: 5​=521​=2⋅521​5​
Apply exponent rule: xbxa​=xa−b521​51​=51−21​=251−21​​
Subtract the numbers: 1−21​=21​=2521​​
Apply radical rule: 521​=5​=25​​
The solutions to the quadratic equation are:u=−55​​,u=25​​
Substitute back u=sin(θ)sin(θ)=−55​​,sin(θ)=25​​
sin(θ)=−55​​,sin(θ)=25​​
sin(θ)=−55​​:θ=arcsin(−55​​)+2πn,θ=π+arcsin(55​​)+2πn
sin(θ)=−55​​
Apply trig inverse properties
sin(θ)=−55​​
General solutions for sin(θ)=−55​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnθ=arcsin(−55​​)+2πn,θ=π+arcsin(55​​)+2πn
θ=arcsin(−55​​)+2πn,θ=π+arcsin(55​​)+2πn
sin(θ)=25​​:No Solution
sin(θ)=25​​
−1≤sin(x)≤1NoSolution
Combine all the solutionsθ=arcsin(−55​​)+2πn,θ=π+arcsin(55​​)+2πn
Show solutions in decimal formθ=−0.46364…+2πn,θ=π+0.46364…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot(2θ)=1cos(2x)=1-sin^2(x)tan(x)=1.35arctan(x+1x-1)+arctan(x-12)=arctan(2)sin(α)= 1/4

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(θ)=-(sqrt(5))/3 cos(2θ) ?

    The general solution for sin(θ)=-(sqrt(5))/3 cos(2θ) is θ=-0.46364…+2pin,θ=pi+0.46364…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024