Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(x+1x-1)+arctan(x-12)=arctan(2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(x+1x−1)+arctan(x−12)=arctan(2)

Solution

x=847+2065​​
Solution steps
arctan(x+1⋅x−1)+arctan(x−12)=arctan(2)
Rewrite using trig identities
arctan(x+1⋅x−1)+arctan(x−12)
Use the Sum to Product identity: arctan(s)+arctan(t)=arctan(1−sts+t​)=arctan(1−(x+1⋅x−1)(x−12)x+1⋅x−1+x−12​)
arctan(1−(x+1⋅x−1)(x−12)x+1⋅x−1+x−12​)=arctan(2)
Apply trig inverse properties
arctan(1−(x+1⋅x−1)(x−12)x+1⋅x−1+x−12​)=arctan(2)
arctan(x)=a⇒x=tan(a)1−(x+1⋅x−1)(x−12)x+1⋅x−1+x−12​=tan(arctan(2))
tan(arctan(2))=2
tan(arctan(2))
Rewrite using trig identities:tan(arctan(2))=2
Use the following identity: tan(arctan(x))=x
=2
=2
1−(x+1⋅x−1)(x−12)x+1⋅x−1+x−12​=2
1−(x+1⋅x−1)(x−12)x+1⋅x−1+x−12​=2
Solve 1−(x+1⋅x−1)(x−12)x+1⋅x−1+x−12​=2:x=847−2065​​,x=847+2065​​
1−(x+1⋅x−1)(x−12)x+1⋅x−1+x−12​=2
Simplify 1−(x+1⋅x−1)(x−12)x+1⋅x−1+x−12​:−2x2+25x−113x−13​
1−(x+1⋅x−1)(x−12)x+1⋅x−1+x−12​
x+1⋅x−1+x−12=3x−13
x+1⋅x−1+x−12
Group like terms=x+1⋅x+x−1−12
Add similar elements: x+1⋅x+x=3x=3x−1−12
Subtract the numbers: −1−12=−13=3x−13
=1−(x+1⋅x−1)(x−12)3x−13​
Add similar elements: x+1⋅x=2x=1−(2x−1)(x−12)3x−13​
Expand 1−(2x−1)(x−12):−2x2+25x−11
1−(2x−1)(x−12)
Expand −(2x−1)(x−12):−2x2+25x−12
Expand (2x−1)(x−12):2x2−25x+12
(2x−1)(x−12)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=2x,b=−1,c=x,d=−12=2xx+2x(−12)+(−1)x+(−1)(−12)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=2xx−2⋅12x−1⋅x+1⋅12
Simplify 2xx−2⋅12x−1⋅x+1⋅12:2x2−25x+12
2xx−2⋅12x−1⋅x+1⋅12
2xx=2x2
2xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=2x1+1
Add the numbers: 1+1=2=2x2
2⋅12x=24x
2⋅12x
Multiply the numbers: 2⋅12=24=24x
1⋅x=x
1⋅x
Multiply: 1⋅x=x=x
1⋅12=12
1⋅12
Multiply the numbers: 1⋅12=12=12
=2x2−24x−x+12
Add similar elements: −24x−x=−25x=2x2−25x+12
=2x2−25x+12
=−(2x2−25x+12)
Distribute parentheses=−(2x2)−(−25x)−(12)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2x2+25x−12
=1−2x2+25x−12
Simplify 1−2x2+25x−12:−2x2+25x−11
1−2x2+25x−12
Group like terms=−2x2+25x+1−12
Add/Subtract the numbers: 1−12=−11=−2x2+25x−11
=−2x2+25x−11
=−2x2+25x−113x−13​
−2x2+25x−113x−13​=2
Multiply both sides by −2x2+25x−11
−2x2+25x−113x−13​=2
Multiply both sides by −2x2+25x−11−2x2+25x−113x−13​(−2x2+25x−11)=2(−2x2+25x−11)
Simplify3x−13=2(−2x2+25x−11)
3x−13=2(−2x2+25x−11)
Solve 3x−13=2(−2x2+25x−11):x=847−2065​​,x=847+2065​​
3x−13=2(−2x2+25x−11)
Expand 2(−2x2+25x−11):−4x2+50x−22
2(−2x2+25x−11)
Distribute parentheses=2(−2x2)+2⋅25x+2(−11)
Apply minus-plus rules+(−a)=−a=−2⋅2x2+2⋅25x−2⋅11
Simplify −2⋅2x2+2⋅25x−2⋅11:−4x2+50x−22
−2⋅2x2+2⋅25x−2⋅11
Multiply the numbers: 2⋅2=4=−4x2+2⋅25x−2⋅11
Multiply the numbers: 2⋅25=50=−4x2+50x−2⋅11
Multiply the numbers: 2⋅11=22=−4x2+50x−22
=−4x2+50x−22
3x−13=−4x2+50x−22
Switch sides−4x2+50x−22=3x−13
Move 13to the left side
−4x2+50x−22=3x−13
Add 13 to both sides−4x2+50x−22+13=3x−13+13
Simplify−4x2+50x−9=3x
−4x2+50x−9=3x
Move 3xto the left side
−4x2+50x−9=3x
Subtract 3x from both sides−4x2+50x−9−3x=3x−3x
Simplify−4x2+47x−9=0
−4x2+47x−9=0
Solve with the quadratic formula
−4x2+47x−9=0
Quadratic Equation Formula:
For a=−4,b=47,c=−9x1,2​=2(−4)−47±472−4(−4)(−9)​​
x1,2​=2(−4)−47±472−4(−4)(−9)​​
472−4(−4)(−9)​=2065​
472−4(−4)(−9)​
Apply rule −(−a)=a=472−4⋅4⋅9​
Multiply the numbers: 4⋅4⋅9=144=472−144​
472=2209=2209−144​
Subtract the numbers: 2209−144=2065=2065​
x1,2​=2(−4)−47±2065​​
Separate the solutionsx1​=2(−4)−47+2065​​,x2​=2(−4)−47−2065​​
x=2(−4)−47+2065​​:847−2065​​
2(−4)−47+2065​​
Remove parentheses: (−a)=−a=−2⋅4−47+2065​​
Multiply the numbers: 2⋅4=8=−8−47+2065​​
Apply the fraction rule: −b−a​=ba​−47+2065​=−(47−2065​)=847−2065​​
x=2(−4)−47−2065​​:847+2065​​
2(−4)−47−2065​​
Remove parentheses: (−a)=−a=−2⋅4−47−2065​​
Multiply the numbers: 2⋅4=8=−8−47−2065​​
Apply the fraction rule: −b−a​=ba​−47−2065​=−(47+2065​)=847+2065​​
The solutions to the quadratic equation are:x=847−2065​​,x=847+2065​​
x=847−2065​​,x=847+2065​​
Verify Solutions
Find undefined (singularity) points:x=425−537​​,x=425+537​​
Take the denominator(s) of 1−(x+1⋅x−1)(x−12)x+1⋅x−1+x−12​ and compare to zero
Solve 1−(x+1⋅x−1)(x−12)=0:x=425−537​​,x=425+537​​
1−(x+1⋅x−1)(x−12)=0
Expand 1−(x+1⋅x−1)(x−12):−2x2+25x−11
1−(x+1⋅x−1)(x−12)
Add similar elements: x+1⋅x=2x=1−(2x−1)(x−12)
Expand −(2x−1)(x−12):−2x2+25x−12
Expand (2x−1)(x−12):2x2−25x+12
(2x−1)(x−12)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=2x,b=−1,c=x,d=−12=2xx+2x(−12)+(−1)x+(−1)(−12)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=2xx−2⋅12x−1⋅x+1⋅12
Simplify 2xx−2⋅12x−1⋅x+1⋅12:2x2−25x+12
2xx−2⋅12x−1⋅x+1⋅12
2xx=2x2
2xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=2x1+1
Add the numbers: 1+1=2=2x2
2⋅12x=24x
2⋅12x
Multiply the numbers: 2⋅12=24=24x
1⋅x=x
1⋅x
Multiply: 1⋅x=x=x
1⋅12=12
1⋅12
Multiply the numbers: 1⋅12=12=12
=2x2−24x−x+12
Add similar elements: −24x−x=−25x=2x2−25x+12
=2x2−25x+12
=−(2x2−25x+12)
Distribute parentheses=−(2x2)−(−25x)−(12)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2x2+25x−12
=1−2x2+25x−12
Simplify 1−2x2+25x−12:−2x2+25x−11
1−2x2+25x−12
Group like terms=−2x2+25x+1−12
Add/Subtract the numbers: 1−12=−11=−2x2+25x−11
=−2x2+25x−11
−2x2+25x−11=0
Solve with the quadratic formula
−2x2+25x−11=0
Quadratic Equation Formula:
For a=−2,b=25,c=−11x1,2​=2(−2)−25±252−4(−2)(−11)​​
x1,2​=2(−2)−25±252−4(−2)(−11)​​
252−4(−2)(−11)​=537​
252−4(−2)(−11)​
Apply rule −(−a)=a=252−4⋅2⋅11​
Multiply the numbers: 4⋅2⋅11=88=252−88​
252=625=625−88​
Subtract the numbers: 625−88=537=537​
x1,2​=2(−2)−25±537​​
Separate the solutionsx1​=2(−2)−25+537​​,x2​=2(−2)−25−537​​
x=2(−2)−25+537​​:425−537​​
2(−2)−25+537​​
Remove parentheses: (−a)=−a=−2⋅2−25+537​​
Multiply the numbers: 2⋅2=4=−4−25+537​​
Apply the fraction rule: −b−a​=ba​−25+537​=−(25−537​)=425−537​​
x=2(−2)−25−537​​:425+537​​
2(−2)−25−537​​
Remove parentheses: (−a)=−a=−2⋅2−25−537​​
Multiply the numbers: 2⋅2=4=−4−25−537​​
Apply the fraction rule: −b−a​=ba​−25−537​=−(25+537​)=425+537​​
The solutions to the quadratic equation are:x=425−537​​,x=425+537​​
The following points are undefinedx=425−537​​,x=425+537​​
Combine undefined points with solutions:
x=847−2065​​,x=847+2065​​
x=847−2065​​,x=847+2065​​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arctan(x+1x−1)+arctan(x−12)=arctan(2)
Remove the ones that don't agree with the equation.
Check the solution 847−2065​​:False
847−2065​​
Plug in n=1847−2065​​
For arctan(x+1x−1)+arctan(x−12)=arctan(2)plug inx=847−2065​​arctan(847−2065​​+1⋅847−2065​​−1)+arctan(847−2065​​−12)=arctan(2)
Refine−2.03444…=1.10714…
⇒False
Check the solution 847+2065​​:True
847+2065​​
Plug in n=1847+2065​​
For arctan(x+1x−1)+arctan(x−12)=arctan(2)plug inx=847+2065​​arctan(847+2065​​+1⋅847+2065​​−1)+arctan(847+2065​​−12)=arctan(2)
Refine1.10714…=1.10714…
⇒True
x=847+2065​​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(α)= 1/43cos^2(3x)-9/4 =0-5cos(x)+8.6602500000000…sin(x)=-5sin(2pi*1.5x)=0sin(15x)+cos(15x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for arctan(x+1x-1)+arctan(x-12)=arctan(2) ?

    The general solution for arctan(x+1x-1)+arctan(x-12)=arctan(2) is x=(47+sqrt(2065))/8
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024