Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(tan(x))/(sec(x))=cot(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(x)tan(x)​=cot(x)

Solution

x=0.90455…+2πn,x=2π−0.90455…+2πn
+1
Degrees
x=51.82729…∘+360∘n,x=308.17270…∘+360∘n
Solution steps
sec(x)tan(x)​=cot(x)
Subtract cot(x) from both sidessec(x)tan(x)​−cot(x)=0
Simplify sec(x)tan(x)​−cot(x):sec(x)tan(x)−cot(x)sec(x)​
sec(x)tan(x)​−cot(x)
Convert element to fraction: cot(x)=sec(x)cot(x)sec(x)​=sec(x)tan(x)​−sec(x)cot(x)sec(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sec(x)tan(x)−cot(x)sec(x)​
sec(x)tan(x)−cot(x)sec(x)​=0
g(x)f(x)​=0⇒f(x)=0tan(x)−cot(x)sec(x)=0
Express with sin, coscos(x)sin(x)​−sin(x)cos(x)​⋅cos(x)1​=0
Simplify cos(x)sin(x)​−sin(x)cos(x)​⋅cos(x)1​:cos(x)sin(x)sin2(x)−cos(x)​
cos(x)sin(x)​−sin(x)cos(x)​⋅cos(x)1​
sin(x)cos(x)​⋅cos(x)1​=sin(x)1​
sin(x)cos(x)​⋅cos(x)1​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sin(x)cos(x)cos(x)⋅1​
Cancel the common factor: cos(x)=sin(x)1​
=cos(x)sin(x)​−sin(x)1​
Least Common Multiplier of cos(x),sin(x):cos(x)sin(x)
cos(x),sin(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x) or sin(x)=cos(x)sin(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(x)sin(x)
For cos(x)sin(x)​:multiply the denominator and numerator by sin(x)cos(x)sin(x)​=cos(x)sin(x)sin(x)sin(x)​=cos(x)sin(x)sin2(x)​
For sin(x)1​:multiply the denominator and numerator by cos(x)sin(x)1​=sin(x)cos(x)1⋅cos(x)​=cos(x)sin(x)cos(x)​
=cos(x)sin(x)sin2(x)​−cos(x)sin(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)sin2(x)−cos(x)​
cos(x)sin(x)sin2(x)−cos(x)​=0
g(x)f(x)​=0⇒f(x)=0sin2(x)−cos(x)=0
Add cos(x) to both sidessin2(x)=cos(x)
Square both sides(sin2(x))2=cos2(x)
Subtract cos2(x) from both sidessin4(x)−cos2(x)=0
Factor sin4(x)−cos2(x):(sin2(x)+cos(x))(sin2(x)−cos(x))
sin4(x)−cos2(x)
Apply exponent rule: abc=(ab)csin4(x)=(sin2(x))2=(sin2(x))2−cos2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(sin2(x))2−cos2(x)=(sin2(x)+cos(x))(sin2(x)−cos(x))=(sin2(x)+cos(x))(sin2(x)−cos(x))
(sin2(x)+cos(x))(sin2(x)−cos(x))=0
Solving each part separatelysin2(x)+cos(x)=0orsin2(x)−cos(x)=0
sin2(x)+cos(x)=0:x=arccos(−2−1+5​​)+2πn,x=−arccos(−2−1+5​​)+2πn
sin2(x)+cos(x)=0
Rewrite using trig identities
cos(x)+sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=cos(x)+1−cos2(x)
1+cos(x)−cos2(x)=0
Solve by substitution
1+cos(x)−cos2(x)=0
Let: cos(x)=u1+u−u2=0
1+u−u2=0:u=−2−1+5​​,u=21+5​​
1+u−u2=0
Write in the standard form ax2+bx+c=0−u2+u+1=0
Solve with the quadratic formula
−u2+u+1=0
Quadratic Equation Formula:
For a=−1,b=1,c=1u1,2​=2(−1)−1±12−4(−1)⋅1​​
u1,2​=2(−1)−1±12−4(−1)⋅1​​
12−4(−1)⋅1​=5​
12−4(−1)⋅1​
Apply rule 1a=112=1=1−4(−1)⋅1​
Apply rule −(−a)=a=1+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2(−1)−1±5​​
Separate the solutionsu1​=2(−1)−1+5​​,u2​=2(−1)−1−5​​
u=2(−1)−1+5​​:−2−1+5​​
2(−1)−1+5​​
Remove parentheses: (−a)=−a=−2⋅1−1+5​​
Multiply the numbers: 2⋅1=2=−2−1+5​​
Apply the fraction rule: −ba​=−ba​=−2−1+5​​
u=2(−1)−1−5​​:21+5​​
2(−1)−1−5​​
Remove parentheses: (−a)=−a=−2⋅1−1−5​​
Multiply the numbers: 2⋅1=2=−2−1−5​​
Apply the fraction rule: −b−a​=ba​−1−5​=−(1+5​)=21+5​​
The solutions to the quadratic equation are:u=−2−1+5​​,u=21+5​​
Substitute back u=cos(x)cos(x)=−2−1+5​​,cos(x)=21+5​​
cos(x)=−2−1+5​​,cos(x)=21+5​​
cos(x)=−2−1+5​​:x=arccos(−2−1+5​​)+2πn,x=−arccos(−2−1+5​​)+2πn
cos(x)=−2−1+5​​
Apply trig inverse properties
cos(x)=−2−1+5​​
General solutions for cos(x)=−2−1+5​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−2−1+5​​)+2πn,x=−arccos(−2−1+5​​)+2πn
x=arccos(−2−1+5​​)+2πn,x=−arccos(−2−1+5​​)+2πn
cos(x)=21+5​​:No Solution
cos(x)=21+5​​
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=arccos(−2−1+5​​)+2πn,x=−arccos(−2−1+5​​)+2πn
sin2(x)−cos(x)=0:x=arccos(25​−1​)+2πn,x=2π−arccos(25​−1​)+2πn
sin2(x)−cos(x)=0
Rewrite using trig identities
−cos(x)+sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−cos(x)+1−cos2(x)
1−cos(x)−cos2(x)=0
Solve by substitution
1−cos(x)−cos2(x)=0
Let: cos(x)=u1−u−u2=0
1−u−u2=0:u=−21+5​​,u=25​−1​
1−u−u2=0
Write in the standard form ax2+bx+c=0−u2−u+1=0
Solve with the quadratic formula
−u2−u+1=0
Quadratic Equation Formula:
For a=−1,b=−1,c=1u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅1​​
u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅1​​
(−1)2−4(−1)⋅1​=5​
(−1)2−4(−1)⋅1​
Apply rule −(−a)=a=(−1)2+4⋅1⋅1​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2(−1)−(−1)±5​​
Separate the solutionsu1​=2(−1)−(−1)+5​​,u2​=2(−1)−(−1)−5​​
u=2(−1)−(−1)+5​​:−21+5​​
2(−1)−(−1)+5​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11+5​​
Multiply the numbers: 2⋅1=2=−21+5​​
Apply the fraction rule: −ba​=−ba​=−21+5​​
u=2(−1)−(−1)−5​​:25​−1​
2(−1)−(−1)−5​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11−5​​
Multiply the numbers: 2⋅1=2=−21−5​​
Apply the fraction rule: −b−a​=ba​1−5​=−(5​−1)=25​−1​
The solutions to the quadratic equation are:u=−21+5​​,u=25​−1​
Substitute back u=cos(x)cos(x)=−21+5​​,cos(x)=25​−1​
cos(x)=−21+5​​,cos(x)=25​−1​
cos(x)=−21+5​​:No Solution
cos(x)=−21+5​​
−1≤cos(x)≤1NoSolution
cos(x)=25​−1​:x=arccos(25​−1​)+2πn,x=2π−arccos(25​−1​)+2πn
cos(x)=25​−1​
Apply trig inverse properties
cos(x)=25​−1​
General solutions for cos(x)=25​−1​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(25​−1​)+2πn,x=2π−arccos(25​−1​)+2πn
x=arccos(25​−1​)+2πn,x=2π−arccos(25​−1​)+2πn
Combine all the solutionsx=arccos(25​−1​)+2πn,x=2π−arccos(25​−1​)+2πn
Combine all the solutionsx=arccos(−2−1+5​​)+2πn,x=−arccos(−2−1+5​​)+2πn,x=arccos(25​−1​)+2πn,x=2π−arccos(25​−1​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sec(x)tan(x)​=cot(x)
Remove the ones that don't agree with the equation.
Check the solution arccos(−2−1+5​​)+2πn:False
arccos(−2−1+5​​)+2πn
Plug in n=1arccos(−2−1+5​​)+2π1
For sec(x)tan(x)​=cot(x)plug inx=arccos(−2−1+5​​)+2π1sec(arccos(−2−1+5​​)+2π1)tan(arccos(−2−1+5​​)+2π1)​=cot(arccos(−2−1+5​​)+2π1)
Refine0.78615…=−0.78615…
⇒False
Check the solution −arccos(−2−1+5​​)+2πn:False
−arccos(−2−1+5​​)+2πn
Plug in n=1−arccos(−2−1+5​​)+2π1
For sec(x)tan(x)​=cot(x)plug inx=−arccos(−2−1+5​​)+2π1sec(−arccos(−2−1+5​​)+2π1)tan(−arccos(−2−1+5​​)+2π1)​=cot(−arccos(−2−1+5​​)+2π1)
Refine−0.78615…=0.78615…
⇒False
Check the solution arccos(25​−1​)+2πn:True
arccos(25​−1​)+2πn
Plug in n=1arccos(25​−1​)+2π1
For sec(x)tan(x)​=cot(x)plug inx=arccos(25​−1​)+2π1sec(arccos(25​−1​)+2π1)tan(arccos(25​−1​)+2π1)​=cot(arccos(25​−1​)+2π1)
Refine0.78615…=0.78615…
⇒True
Check the solution 2π−arccos(25​−1​)+2πn:True
2π−arccos(25​−1​)+2πn
Plug in n=12π−arccos(25​−1​)+2π1
For sec(x)tan(x)​=cot(x)plug inx=2π−arccos(25​−1​)+2π1sec(2π−arccos(25​−1​)+2π1)tan(2π−arccos(25​−1​)+2π1)​=cot(2π−arccos(25​−1​)+2π1)
Refine−0.78615…=−0.78615…
⇒True
x=arccos(25​−1​)+2πn,x=2π−arccos(25​−1​)+2πn
Show solutions in decimal formx=0.90455…+2πn,x=2π−0.90455…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(7x)+cos(3x)=05sin^2(x)+2sin(x)=0cos(2x)-11cos(x)+6=0sin(x)=-0.45sin(x)=-0.59

Frequently Asked Questions (FAQ)

  • What is the general solution for (tan(x))/(sec(x))=cot(x) ?

    The general solution for (tan(x))/(sec(x))=cot(x) is x=0.90455…+2pin,x=2pi-0.90455…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024