Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove (sin(2x))/(1-cos(2x))=2csc(2x)-tan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove 1−cos(2x)sin(2x)​=2csc(2x)−tan(x)

Solution

True
Solution steps
1−cos(2x)sin(2x)​=2csc(2x)−tan(x)
Manipulating left side1−cos(2x)sin(2x)​
Rewrite using trig identities
1−cos(2x)sin(2x)​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=1−cos(2x)2sin(x)cos(x)​
Use the Double Angle identity: cos(2x)=1−2sin2(x)=1−(1−2sin2(x))2sin(x)cos(x)​
Simplify 1−(1−2sin2(x))2sin(x)cos(x)​:sin(x)cos(x)​
1−(1−2sin2(x))2sin(x)cos(x)​
Expand 1−(1−2sin2(x)):2sin2(x)
1−(1−2sin2(x))
−(1−2sin2(x)):−1+2sin2(x)
−(1−2sin2(x))
Distribute parentheses=−(1)−(−2sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+2sin2(x)
=1−1+2sin2(x)
1−1=0=2sin2(x)
=2sin2(x)2sin(x)cos(x)​
Divide the numbers: 22​=1=sin2(x)sin(x)cos(x)​
Cancel the common factor: sin(x)=sin(x)cos(x)​
=sin(x)cos(x)​
=sin(x)cos(x)​
Manipulating right side2csc(2x)−tan(x)
Express with sin, cos
−tan(x)+2csc(2x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−cos(x)sin(x)​+2csc(2x)
Use the basic trigonometric identity: csc(x)=sin(x)1​=−cos(x)sin(x)​+2⋅sin(2x)1​
Simplify −cos(x)sin(x)​+2⋅sin(2x)1​:cos(x)sin(2x)−sin(x)sin(2x)+2cos(x)​
−cos(x)sin(x)​+2⋅sin(2x)1​
2⋅sin(2x)1​=sin(2x)2​
2⋅sin(2x)1​
Multiply fractions: a⋅cb​=ca⋅b​=sin(2x)1⋅2​
Multiply the numbers: 1⋅2=2=sin(2x)2​
=−cos(x)sin(x)​+sin(2x)2​
Least Common Multiplier of cos(x),sin(2x):cos(x)sin(2x)
cos(x),sin(2x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x) or sin(2x)=cos(x)sin(2x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(x)sin(2x)
For cos(x)sin(x)​:multiply the denominator and numerator by sin(2x)cos(x)sin(x)​=cos(x)sin(2x)sin(x)sin(2x)​
For sin(2x)2​:multiply the denominator and numerator by cos(x)sin(2x)2​=sin(2x)cos(x)2cos(x)​
=−cos(x)sin(2x)sin(x)sin(2x)​+sin(2x)cos(x)2cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(2x)−sin(x)sin(2x)+2cos(x)​
=cos(x)sin(2x)−sin(x)sin(2x)+2cos(x)​
=cos(x)sin(2x)2cos(x)−sin(2x)sin(x)​
Rewrite using trig identities
cos(x)sin(2x)2cos(x)−sin(2x)sin(x)​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(x)⋅2sin(x)cos(x)2cos(x)−2sin(x)cos(x)sin(x)​
Simplify cos(x)⋅2sin(x)cos(x)2cos(x)−2sin(x)cos(x)sin(x)​:sin(x)cos(x)1−sin2(x)​
cos(x)⋅2sin(x)cos(x)2cos(x)−2sin(x)cos(x)sin(x)​
2cos(x)−2sin(x)cos(x)sin(x)=2cos(x)−2sin2(x)cos(x)
2cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
Add the numbers: 1+1=2=2cos(x)sin2(x)
=2cos(x)−2sin2(x)cos(x)
=2cos(x)sin(x)cos(x)2cos(x)−2sin2(x)cos(x)​
cos(x)⋅2sin(x)cos(x)=2cos2(x)sin(x)
cos(x)⋅2sin(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2sin(x)cos1+1(x)
Add the numbers: 1+1=2=2sin(x)cos2(x)
=2cos2(x)sin(x)2cos(x)−2sin2(x)cos(x)​
Factor 2cos(x)−2cos(x)sin2(x):2cos(x)(1−sin2(x))
2cos(x)−2cos(x)sin2(x)
Rewrite as=1⋅2cos(x)−2cos(x)sin2(x)
Factor out common term 2cos(x)=2cos(x)(1−sin2(x))
=2sin(x)cos2(x)2cos(x)(1−sin2(x))​
Cancel 2sin(x)cos2(x)2cos(x)(1−sin2(x))​:sin(x)cos(x)1−sin2(x)​
2sin(x)cos2(x)2cos(x)(1−sin2(x))​
Divide the numbers: 22​=1=cos2(x)sin(x)cos(x)(−sin2(x)+1)​
Cancel the common factor: cos(x)=sin(x)cos(x)1−sin2(x)​
=sin(x)cos(x)1−sin2(x)​
=sin(x)cos(x)1−sin2(x)​
Use the Pythagorean identity: 1=cos2(x)+sin2(x)1−sin2(x)=cos2(x)=sin(x)cos(x)cos2(x)​
Cancel the common factor: cos(x)=sin(x)cos(x)​
=sin(x)cos(x)​
We showed that the two sides could take the same form⇒True

Popular Examples

prove tan(x)=tan(x)*csc^2(x)+cot(-x)prove (1-cos(2θ)+sin(2θ))/(1+cos(2θ)+sin(2θ))=tan(θ)prove cot(x)sec^2(x)-cot(x)=tan(x)prove cos(-pi/4-5t)=cos(5t+pi/4)prove tan(pi/4-θ)=(1-tan(θ))/(1+tan(θ))

Frequently Asked Questions (FAQ)

  • Is (sin(2x))/(1-cos(2x))=2csc(2x)-tan(x) ?

    The answer to whether (sin(2x))/(1-cos(2x))=2csc(2x)-tan(x) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024