Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove cos^6(105)=((1+cos(210))/2)^3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove cos6(105∘)=(21+cos(210∘)​)3

Solution

True
Solution steps
cos6(105∘)=(21+cos(210∘)​)3
Manipulating left sidecos6(105∘)
Expand cos6(105∘):3213​−64153​​
cos6(105∘)
cos(105∘)=42​(1−3​)​
cos(105∘)
Rewrite using trig identities:cos(60∘)cos(45∘)−sin(60∘)sin(45∘)
cos(105∘)
Write cos(105∘)as cos(60∘+45∘)=cos(60∘+45∘)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(60∘)cos(45∘)−sin(60∘)sin(45∘)
=cos(60∘)cos(45∘)−sin(60∘)sin(45∘)
Use the following trivial identity:cos(60∘)=21​
cos(60∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
Use the following trivial identity:cos(45∘)=22​​
cos(45∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(60∘)=23​​
sin(60∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
Use the following trivial identity:sin(45∘)=22​​
sin(45∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=21​⋅22​​−23​​⋅22​​
Simplify 21​⋅22​​−23​​⋅22​​:42​(1−3​)​
21​⋅22​​−23​​⋅22​​
Factor out common term 22​​=22​​(21​−23​​)
21​−23​​=21−3​​
21​−23​​
Apply rule ca​±cb​=ca±b​=21−3​​
=22​​⋅21−3​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅2(1−3​)2​​
Multiply the numbers: 2⋅2=4=42​(1−3​)​
=42​(1−3​)​
=(42​(1−3​)​)6
Simplify
(42​(1−3​)​)6
42​(1−3​)​=42​−6​​
42​(1−3​)​
Expand 2​(1−3​):2​−6​
2​(1−3​)
Apply the distributive law: a(b−c)=ab−aca=2​,b=1,c=3​=2​⋅1−2​3​
=1⋅2​−2​3​
Simplify 1⋅2​−2​3​:2​−6​
1⋅2​−2​3​
1⋅2​=2​
1⋅2​
Multiply: 1⋅2​=2​=2​
2​3​=6​
2​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multiply the numbers: 2⋅3=6=6​
=2​−6​
=2​−6​
=42​−6​​
=(42​−6​​)6
Apply exponent rule: (ba​)c=bcac​=46(2​−6​)6​
(2​−6​)6=1664−9603​
(2​−6​)6
Apply binomial theorem: (a+b)n=i=0∑n​(in​)a(n−i)bia=2​,b=−6​
=i=0∑6​(i6​)(2​)(6−i)(−6​)i
Expand summation
(in​)=i!(n−i)!n!​
i=0:0!(6−0)!6!​(2​)6(−6​)0
i=1:1!(6−1)!6!​(2​)5(−6​)1
i=2:2!(6−2)!6!​(2​)4(−6​)2
i=3:3!(6−3)!6!​(2​)3(−6​)3
i=4:4!(6−4)!6!​(2​)2(−6​)4
i=5:5!(6−5)!6!​(2​)1(−6​)5
i=6:6!(6−6)!6!​(2​)0(−6​)6
=0!(6−0)!6!​(2​)6(−6​)0+1!(6−1)!6!​(2​)5(−6​)1+2!(6−2)!6!​(2​)4(−6​)2+3!(6−3)!6!​(2​)3(−6​)3+4!(6−4)!6!​(2​)2(−6​)4+5!(6−5)!6!​(2​)1(−6​)5+6!(6−6)!6!​(2​)0(−6​)6
=0!(6−0)!6!​(2​)6(−6​)0+1!(6−1)!6!​(2​)5(−6​)1+2!(6−2)!6!​(2​)4(−6​)2+3!(6−3)!6!​(2​)3(−6​)3+4!(6−4)!6!​(2​)2(−6​)4+5!(6−5)!6!​(2​)1(−6​)5+6!(6−6)!6!​(2​)0(−6​)6
0!(6−0)!6!​(2​)6(−6​)0=8
0!(6−0)!6!​(2​)6(−6​)0
Apply rule a0=1,a=0(−6​)0=1=1⋅0!(6−0)!6!​(2​)6
Multiply fractions: a⋅cb​=ca⋅b​=1⋅0!(6−0)!6!(2​)6​
0!(6−0)!6!(2​)6​=8
0!(6−0)!6!(2​)6​
0!(6−0)!=6!
0!(6−0)!
Subtract the numbers: 6−0=6=0!⋅6!
Apply factorial rule: 0!=1=1⋅6!
Multiply: 1⋅6!=6!=6!
=6!6!(2​)6​
Cancel the common factor: 6!=(2​)6
Apply radical rule: a​=a21​=(221​)6
Apply exponent rule: (ab)c=abc=221​⋅6
21​⋅6=3
21​⋅6
Multiply fractions: a⋅cb​=ca⋅b​=21⋅6​
Multiply the numbers: 1⋅6=6=26​
Divide the numbers: 26​=3=3
=23
23=8=8
=1⋅8
Multiply the numbers: 1⋅8=8=8
1!(6−1)!6!​(2​)5(−6​)1=−483​
1!(6−1)!6!​(2​)5(−6​)1
Apply rule a1=a(−6​)1=−6​=1!(6−1)!6!​(2​)5(−6​)
Remove parentheses: (−a)=−a=−1!(6−1)!6!​(2​)56​
Multiply fractions: a⋅cb​=ca⋅b​=−1!(6−1)!6!(2​)56​​
Subtract the numbers: 6−1=5=−1!⋅5!6​⋅6!(2​)5​
Cancel the factorials: (n−m)!n!​=n⋅(n−1)⋯(n−m+1),n>m5!6!​=6=−1!66​(2​)5​
(2​)5=222​
(2​)5
Apply radical rule: a​=a21​=(221​)5
Apply exponent rule: (ab)c=abc=221​⋅5
21​⋅5=25​
21​⋅5
Multiply fractions: a⋅cb​=ca⋅b​=21⋅5​
Multiply the numbers: 1⋅5=5=25​
=225​
225​=222​
225​
225​=22+21​=22+21​
Apply exponent rule: xa+b=xaxb=22⋅221​
Refine=222​
=222​
=−1!22⋅62​6​​
Simplify 6⋅222​6​:23⋅3⋅23​
6⋅222​6​
Factor integer 6=2⋅3=2⋅3⋅222​6​
Factor integer 6=2⋅3=2⋅3⋅222​2⋅3​
Apply radical rule: 2⋅3​=2​3​=2⋅3⋅222​2​3​
Apply exponent rule: ab⋅ac=ab+c2⋅22=21+2=3⋅21+22​2​3​
Add the numbers: 1+2=3=3⋅232​2​3​
Apply radical rule: a​a​=a2​2​=2=23⋅3⋅23​
=−1!23⋅3⋅23​​
Multiply the numbers: 3⋅2=6=−1!23⋅63​​
6⋅233​=483​
6⋅233​
23=8=6⋅83​
Multiply the numbers: 6⋅8=48=483​
=−1!483​​
Apply factorial rule: n!=1⋅2⋅3⋅…⋅n1!=1=−1483​​
Apply rule 1a​=a=−483​
2!(6−2)!6!​(2​)4(−6​)2=360
2!(6−2)!6!​(2​)4(−6​)2
Multiply fractions: a⋅cb​=ca⋅b​=2!(6−2)!6!(2​)4(−6​)2​
6!(2​)4(−6​)2=6!(2​)4(6​)2
6!(2​)4(−6​)2
(−6​)2=(6​)2
(−6​)2
Apply exponent rule: (−a)n=an,if n is even(−6​)2=(6​)2=(6​)2
=6!(2​)4(6​)2
=2!(6−2)!6!(2​)4(6​)2​
Subtract the numbers: 6−2=4=2!⋅4!6!(2​)4(6​)2​
Cancel the factorials: (n−m)!n!​=n⋅(n−1)⋯(n−m+1),n>m4!6!​=6⋅5=2!6⋅5(2​)4(6​)2​
Refine=2!30(2​)4(6​)2​
(2​)4=22
(2​)4
Apply radical rule: a​=a21​=(221​)4
Apply exponent rule: (ab)c=abc=221​⋅4
21​⋅4=2
21​⋅4
Multiply fractions: a⋅cb​=ca⋅b​=21⋅4​
Multiply the numbers: 1⋅4=4=24​
Divide the numbers: 24​=2=2
=22
=2!22⋅30(6​)2​
(6​)2=6
(6​)2
Apply radical rule: a​=a21​=(621​)2
Apply exponent rule: (ab)c=abc=621​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=6
=2!22⋅30⋅6​
Multiply the numbers: 30⋅6=180=2!22⋅180​
180⋅22=720
180⋅22
22=4=180⋅4
Multiply the numbers: 180⋅4=720=720
=2!720​
2!=2
2!
Apply factorial rule: n!=1⋅2⋅3⋅…⋅n2!=1⋅2=1⋅2
Multiply the numbers: 1⋅2=2=2
=2720​
Divide the numbers: 2720​=360=360
3!(6−3)!6!​(2​)3(−6​)3=−4803​
3!(6−3)!6!​(2​)3(−6​)3
Multiply fractions: a⋅cb​=ca⋅b​=3!(6−3)!6!(2​)3(−6​)3​
6!(2​)3(−6​)3=−6!(23​)3
6!(2​)3(−6​)3
(−6​)3=−(6​)3
(−6​)3
Apply exponent rule: (−a)n=−an,if n is odd(−6​)3=−(6​)3=−(6​)3
=6!(2​)3(−(6​)3)
Remove parentheses: (−a)=−a=−6!(2​)3(6​)3
Apply exponent rule: ambm=(ab)m(2​)3(6​)3=(2​6​)3=−6!(2​6​)3
2​6​=23​
2​6​
Factor integer 6=2⋅3=2​2⋅3​
Apply radical rule: 2⋅3​=2​3​=2​2​3​
Apply radical rule: a​a​=a2​2​=2=23​
=−6!(23​)3
=3!(6−3)!−6!(23​)3​
Subtract the numbers: 6−3=3=3!⋅3!−6!(23​)3​
Apply the fraction rule: b−a​=−ba​=−3!⋅3!6!(23​)3​
Cancel 3!⋅3!6!(23​)3​:3!120(23​)3​
3!⋅3!6!(23​)3​
Cancel the factorials: (n−m)!n!​=n⋅(n−1)⋯(n−m+1),n>m3!6!​=6⋅5⋅4=3!6⋅5⋅4(23​)3​
Refine=3!120(23​)3​
=−3!120(23​)3​
(23​)3=23⋅33​
(23​)3
Apply exponent rule: (a⋅b)n=anbn=23(3​)3
(3​)3:323​
Apply radical rule: a​=a21​=(321​)3
Apply exponent rule: (ab)c=abc=321​⋅3
21​⋅3=23​
21​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=21⋅3​
Multiply the numbers: 1⋅3=3=23​
=323​
=23⋅323​
323​=33​
323​
323​=31+21​=31+21​
Apply exponent rule: xa+b=xaxb=31⋅321​
Refine=33​
=23⋅33​
=−3!23⋅120⋅33​​
Multiply the numbers: 120⋅3=360=−3!23⋅3603​​
360⋅233​=28803​
360⋅233​
23=8=360⋅83​
Multiply the numbers: 360⋅8=2880=28803​
=−3!28803​​
3!=6
3!
Apply factorial rule: n!=1⋅2⋅3⋅…⋅n3!=1⋅2⋅3=1⋅2⋅3
Multiply the numbers: 1⋅2⋅3=6=6
=−628803​​
Divide the numbers: 62880​=480=−4803​
4!(6−4)!6!​(2​)2(−6​)4=1080
4!(6−4)!6!​(2​)2(−6​)4
Multiply fractions: a⋅cb​=ca⋅b​=4!(6−4)!6!(2​)2(−6​)4​
6!(2​)2(−6​)4=6!(6​)4(2​)2
6!(2​)2(−6​)4
(−6​)4=(6​)4
(−6​)4
Apply exponent rule: (−a)n=an,if n is even(−6​)4=(6​)4=(6​)4
=6!(6​)4(2​)2
=4!(6−4)!6!(6​)4(2​)2​
Subtract the numbers: 6−4=2=4!⋅2!6!(6​)4(2​)2​
Cancel the factorials: (n−m)!n!​=n⋅(n−1)⋯(n−m+1),n>m4!6!​=6⋅5=2!6⋅5(6​)4(2​)2​
Refine=2!30(6​)4(2​)2​
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2!30⋅2(6​)4​
(6​)4=62
(6​)4
Apply radical rule: a​=a21​=(621​)4
Apply exponent rule: (ab)c=abc=621​⋅4
21​⋅4=2
21​⋅4
Multiply fractions: a⋅cb​=ca⋅b​=21⋅4​
Multiply the numbers: 1⋅4=4=24​
Divide the numbers: 24​=2=2
=62
=2!62⋅30⋅2​
Multiply the numbers: 30⋅2=60=2!62⋅60​
60⋅62=2160
60⋅62
62=36=60⋅36
Multiply the numbers: 60⋅36=2160=2160
=2!2160​
2!=2
2!
Apply factorial rule: n!=1⋅2⋅3⋅…⋅n2!=1⋅2=1⋅2
Multiply the numbers: 1⋅2=2=2
=22160​
Divide the numbers: 22160​=1080=1080
5!(6−5)!6!​(2​)1(−6​)5=−4323​
5!(6−5)!6!​(2​)1(−6​)5
Apply rule a1=a(2​)1=2​=2​5!(6−5)!6!​(−6​)5
Multiply fractions: a⋅cb​=ca⋅b​=5!(6−5)!6!2​(−6​)5​
6!2​(−6​)5=−2​⋅6!(6​)5
6!2​(−6​)5
(−6​)5=−(6​)5
(−6​)5
Apply exponent rule: (−a)n=−an,if n is odd(−6​)5=−(6​)5=−(6​)5
=2​⋅6!(−(6​)5)
Remove parentheses: (−a)=−a=−6!2​(6​)5
=5!(6−5)!−2​⋅6!(6​)5​
Subtract the numbers: 6−5=1=5!⋅1!−2​⋅6!(6​)5​
Apply the fraction rule: b−a​=−ba​=−5!⋅1!6!2​(6​)5​
Cancel the factorials: (n−m)!n!​=n⋅(n−1)⋯(n−m+1),n>m5!6!​=6=−1!62​(6​)5​
(6​)5=626​
(6​)5
Apply radical rule: a​=a21​=(621​)5
Apply exponent rule: (ab)c=abc=621​⋅5
21​⋅5=25​
21​⋅5
Multiply fractions: a⋅cb​=ca⋅b​=21⋅5​
Multiply the numbers: 1⋅5=5=25​
=625​
625​=626​
625​
625​=62+21​=62+21​
Apply exponent rule: xa+b=xaxb=62⋅621​
Refine=626​
=626​
=−1!62⋅62​6​​
62​⋅626​=632​6​
62​⋅626​
Apply exponent rule: ab⋅ac=ab+c6⋅62=61+2=2​⋅61+26​
Add the numbers: 1+2=3=2​⋅636​
=−1!632​6​​
Simplify 2​⋅636​:24⋅333​
2​⋅636​
Factor integer 6=2⋅3=2​(2⋅3)36​
Apply exponent rule: (ab)c=acbc(2⋅3)3=23⋅33=2​⋅23⋅336​
Factor integer 6=2⋅3=2​⋅23⋅332⋅3​
Apply radical rule: 2⋅3​=2​3​=2​⋅23⋅332​3​
Apply radical rule: a​a​=a2​2​=2=23⋅33⋅23​
Apply exponent rule: ab⋅ac=ab+c23⋅2=23+1=33⋅23+13​
Add the numbers: 3+1=4=33⋅243​
=−1!24⋅333​​
33⋅243​=4323​
33⋅243​
33=27=24⋅273​
24=16=27⋅163​
Multiply the numbers: 27⋅16=432=4323​
=−1!4323​​
Apply factorial rule: n!=1⋅2⋅3⋅…⋅n1!=1=−14323​​
Apply rule 1a​=a=−4323​
6!(6−6)!6!​(2​)0(−6​)6=216
6!(6−6)!6!​(2​)0(−6​)6
Apply rule a0=1,a=0(2​)0=1=1⋅6!(6−6)!6!​(−6​)6
Multiply fractions: a⋅cb​=ca⋅b​=1⋅6!(6−6)!6!(−6​)6​
Cancel the common factor: 6!=1⋅(6−6)!(−6​)6​
(6−6)!(−6​)6​=216
(6−6)!(−6​)6​
(−6​)6=(6​)6
(−6​)6
Apply exponent rule: (−a)n=an,if n is even(−6​)6=(6​)6=(6​)6
=(6−6)!(6​)6​
(6−6)!=1
(6−6)!
Subtract the numbers: 6−6=0=0!
Apply factorial rule: 0!=1=1
=1(6​)6​
Apply rule 1a​=a=(6​)6
Apply radical rule: a​=a21​=(621​)6
Apply exponent rule: (ab)c=abc=621​⋅6
21​⋅6=3
21​⋅6
Multiply fractions: a⋅cb​=ca⋅b​=21⋅6​
Multiply the numbers: 1⋅6=6=26​
Divide the numbers: 26​=3=3
=63
63=216=216
=1⋅216
Multiply the numbers: 1⋅216=216=216
=8−483​+360−4803​+1080−4323​+216
Simplify 8−483​+360−4803​+1080−4323​+216:1664−9603​
8−483​+360−4803​+1080−4323​+216
Add similar elements: −483​−4803​−4323​=−9603​=8−9603​+360+1080+216
Add the numbers: 8+360+1080+216=1664=1664−9603​
=1664−9603​
=461664−9603​​
Factor 1664−9603​:64(26−153​)
1664−9603​
Rewrite as=64⋅26−64⋅153​
Factor out common term 64=64(26−153​)
=4664(26−153​)​
Factor 64:26
Factor 64=26
Factor 46:212
Factor 4=22=(22)6
Simplify (22)6:212
(22)6
Apply exponent rule: (ab)c=abc=22⋅6
Multiply the numbers: 2⋅6=12=212
=212
=21226(26−153​)​
Cancel 21226(26−153​)​:2626−153​​
21226(26−153​)​
Apply exponent rule: xbxa​=xb−a1​21226​=212−61​=212−626−153​​
Subtract the numbers: 12−6=6=2626−153​​
=2626−153​​
26=64=6426−153​​
Apply the fraction rule: ca±b​=ca​±cb​6426−153​​=6426​−64153​​=6426​−64153​​
Cancel 6426​:3213​
6426​
Cancel the common factor: 2=3213​
=3213​−64153​​
=3213​−64153​​
=3213​−64153​​
Manipulating right side(21+cos(210∘)​)3
Expand (21+cos(210∘)​)3:3213​−64153​​
(21+cos(210∘)​)3
21+cos(210∘)​=42−3​​
21+cos(210∘)​
1+cos(210∘)=1−23​​
1+cos(210∘)
cos(210∘)=−23​​
cos(210∘)
Rewrite using trig identities:cos(180∘)cos(30∘)−sin(180∘)sin(30∘)
cos(210∘)
Write cos(210∘)as cos(180∘+30∘)=cos(180∘+30∘)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(180∘)cos(30∘)−sin(180∘)sin(30∘)
=cos(180∘)cos(30∘)−sin(180∘)sin(30∘)
Use the following trivial identity:cos(180∘)=(−1)
cos(180∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(30∘)=23​​
cos(30∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
Use the following trivial identity:sin(180∘)=0
sin(180∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(30∘)=21​
sin(30∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=(−1)23​​−0⋅21​
Simplify=−23​​
=1−23​​
=21−23​​​
Join 1−23​​:22−3​​
1−23​​
Convert element to fraction: 1=21⋅2​=21⋅2​−23​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=21⋅2−3​​
Multiply the numbers: 1⋅2=2=22−3​​
=222−3​​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅22−3​​
Multiply the numbers: 2⋅2=4=42−3​​
=(42−3​​)3
Simplify
(42−3​​)3
Apply exponent rule: (ba​)c=bcac​=43(2−3​)3​
(2−3​)3=26−153​
(2−3​)3
Apply Perfect Cube Formula: (a−b)3=a3−3a2b+3ab2−b3a=2,b=3​
=23−3⋅223​+3⋅2(3​)2−(3​)3
Simplify 23−3⋅223​+3⋅2(3​)2−(3​)3:26−153​
23−3⋅223​+3⋅2(3​)2−(3​)3
23=8
23
23=8=8
3⋅223​=123​
3⋅223​
22=4=3⋅43​
Multiply the numbers: 3⋅4=12=123​
3⋅2(3​)2=18
3⋅2(3​)2
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=3⋅2⋅3
Multiply the numbers: 3⋅2⋅3=18=18
(3​)3=33​
(3​)3
Apply radical rule: a​=a21​=(321​)3
Apply exponent rule: (ab)c=abc=321​⋅3
21​⋅3=23​
21​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=21⋅3​
Multiply the numbers: 1⋅3=3=23​
=323​
323​=33​
323​
323​=31+21​=31+21​
Apply exponent rule: xa+b=xaxb=31⋅321​
Refine=33​
=33​
=8−123​+18−33​
Add similar elements: −123​−33​=−153​=8−153​+18
Add the numbers: 8+18=26=26−153​
=26−153​
=4326−153​​
43=64=6426−153​​
Apply the fraction rule: ca±b​=ca​±cb​6426−153​​=6426​−64153​​=6426​−64153​​
Cancel 6426​:3213​
6426​
Cancel the common factor: 2=3213​
=3213​−64153​​
=3213​−64153​​
=3213​−64153​​
We showed that the two sides could take the same form⇒True

Popular Examples

prove 1+tan^2(45)=sec^2(45)prove (cot(x))/(cos(x))=csc(x)prove (sin(x)cos(x))/(tan(x))=cos^2(x)prove 2sin^2(2t)+cos(4t)=1prove (cos(θ)+cos(3θ))/(2cos(2θ))=cos(θ)

Frequently Asked Questions (FAQ)

  • Is cos^6(105)=((1+cos(210))/2)^3 ?

    The answer to whether cos^6(105)=((1+cos(210))/2)^3 is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024