Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove 2csc(2x)=sec^2(x)cot(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove 2csc(2x)=sec2(x)cot(x)

Solution

True
Solution steps
2csc(2x)=sec2(x)cot(x)
Manipulating left side2csc(2x)
Express with sin, cos
2csc(2x)
Use the basic trigonometric identity: csc(x)=sin(x)1​=2⋅sin(2x)1​
Simplify 2⋅sin(2x)1​:sin(2x)2​
2⋅sin(2x)1​
Multiply fractions: a⋅cb​=ca⋅b​=sin(2x)1⋅2​
Multiply the numbers: 1⋅2=2=sin(2x)2​
=sin(2x)2​
=sin(2x)2​
Rewrite using trig identities
sin(2x)2​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=2sin(x)cos(x)2​
Divide the numbers: 22​=1=sin(x)cos(x)1​
=sin(x)cos(x)1​
Manipulating right sidesec2(x)cot(x)
Express with sin, cos
cot(x)sec2(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(x)cos(x)​sec2(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=sin(x)cos(x)​(cos(x)1​)2
Simplify sin(x)cos(x)​(cos(x)1​)2:cos(x)sin(x)1​
sin(x)cos(x)​(cos(x)1​)2
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)(cos(x)1​)2​
(cos(x)1​)2=cos2(x)1​
(cos(x)1​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)12​
Apply rule 1a=112=1=cos2(x)1​
=sin(x)cos2(x)1​cos(x)​
Multiply cos(x)cos2(x)1​:cos(x)1​
cos(x)cos2(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos2(x)1⋅cos(x)​
Multiply: 1⋅cos(x)=cos(x)=cos2(x)cos(x)​
Cancel the common factor: cos(x)=cos(x)1​
=sin(x)cos(x)1​​
Apply the fraction rule: acb​​=c⋅ab​=cos(x)sin(x)1​
=cos(x)sin(x)1​
=cos(x)sin(x)1​
We showed that the two sides could take the same form⇒True

Popular Examples

prove sin^2(2θ)=(1-cos(4θ))/2prove 1/(tan(x))=arctan(x)prove sec(-x)= 1/(cos(x))prove ((sec(θ)-tan(θ))^2+1)/(csc(θ)(sec(θ)-tan(θ)))=2tan(θ)prove 2csc(2x)=sec(x)csc(x)

Frequently Asked Questions (FAQ)

  • Is 2csc(2x)=sec^2(x)cot(x) ?

    The answer to whether 2csc(2x)=sec^2(x)cot(x) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024