Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove 1/(1-cos(x))-1/(1+cos(x))=2cot(x)csc(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove 1−cos(x)1​−1+cos(x)1​=2cot(x)csc(x)

Solution

True
Solution steps
1−cos(x)1​−1+cos(x)1​=2cot(x)csc(x)
Manipulating left side1−cos(x)1​−1+cos(x)1​
Simplify −1+cos(x)1​+1−cos(x)1​:(cos(x)+1)(−cos(x)+1)2cos(x)​
−1+cos(x)1​+1−cos(x)1​
Least Common Multiplier of 1+cos(x),1−cos(x):(cos(x)+1)(−cos(x)+1)
1+cos(x),1−cos(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in 1+cos(x) or 1−cos(x)=(cos(x)+1)(−cos(x)+1)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM (cos(x)+1)(−cos(x)+1)
For 1+cos(x)1​:multiply the denominator and numerator by −cos(x)+11+cos(x)1​=(1+cos(x))(−cos(x)+1)1⋅(−cos(x)+1)​=(cos(x)+1)(−cos(x)+1)−cos(x)+1​
For 1−cos(x)1​:multiply the denominator and numerator by cos(x)+11−cos(x)1​=(1−cos(x))(cos(x)+1)1⋅(cos(x)+1)​=(cos(x)+1)(−cos(x)+1)cos(x)+1​
=−(cos(x)+1)(−cos(x)+1)−cos(x)+1​+(cos(x)+1)(−cos(x)+1)cos(x)+1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=(cos(x)+1)(−cos(x)+1)−(−cos(x)+1)+cos(x)+1​
Expand −(−cos(x)+1)+cos(x)+1:2cos(x)
−(−cos(x)+1)+cos(x)+1
−(−cos(x)+1):cos(x)−1
−(−cos(x)+1)
Distribute parentheses=−(−cos(x))−(1)
Apply minus-plus rules−(−a)=a,−(a)=−a=cos(x)−1
=cos(x)−1+cos(x)+1
Simplify cos(x)−1+cos(x)+1:2cos(x)
cos(x)−1+cos(x)+1
Group like terms=cos(x)+cos(x)−1+1
Add similar elements: cos(x)+cos(x)=2cos(x)=2cos(x)−1+1
−1+1=0=2cos(x)
=2cos(x)
=(cos(x)+1)(−cos(x)+1)2cos(x)​
=(1+cos(x))(1−cos(x))2cos(x)​
Rewrite using trig identities
(1+cos(x))(1−cos(x))2cos(x)​
Expand (1+cos(x))(1−cos(x)):1−cos2(x)
(1+cos(x))(1−cos(x))
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=1,b=cos(x)=12−cos2(x)
Apply rule 1a=112=1=1−cos2(x)
=1−cos2(x)2cos(x)​
Use the Pythagorean identity: 1=cos2(x)+sin2(x)1−cos2(x)=sin2(x)=sin2(x)2cos(x)​
=sin2(x)2cos(x)​
Manipulating right side2cot(x)csc(x)
Express with sin, cos
2cot(x)csc(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=2⋅sin(x)cos(x)​csc(x)
Use the basic trigonometric identity: csc(x)=sin(x)1​=2⋅sin(x)cos(x)​⋅sin(x)1​
Simplify 2⋅sin(x)cos(x)​⋅sin(x)1​:sin2(x)2cos(x)​
2⋅sin(x)cos(x)​⋅sin(x)1​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=sin(x)sin(x)cos(x)⋅1⋅2​
Multiply the numbers: 1⋅2=2=sin(x)sin(x)2cos(x)​
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
=sin2(x)2cos(x)​
=sin2(x)2cos(x)​
=sin2(x)2cos(x)​
We showed that the two sides could take the same form⇒True

Popular Examples

prove tan^2(t)= 1/(cos^2(t))-1prove (cot(θ)-tan(θ))/(cot(θ)+tan(θ))=cos(2θ)prove cos^2(2x)+4sin^2(x)cos^2(x)=1prove cos(x)(sec(x)-1)=1-cos(x)prove csc^2(θ)(1-cos^2(θ))=-cos(pi/2)

Frequently Asked Questions (FAQ)

  • Is 1/(1-cos(x))-1/(1+cos(x))=2cot(x)csc(x) ?

    The answer to whether 1/(1-cos(x))-1/(1+cos(x))=2cot(x)csc(x) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024