Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove sec(pi/4+a)sec(pi/4-a)=2sec(2a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove sec(4π​+a)sec(4π​−a)=2sec(2a)

Solution

True
Solution steps
sec(4π​+a)sec(4π​−a)=2sec(2a)
Manipulating left sidesec(4π​+a)sec(4π​−a)
Rewrite using trig identities
sec(4π​−a)
Use the basic trigonometric identity: sec(x)=cos(x)1​=cos(4π​−a)1​
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(4π​)cos(a)+sin(4π​)sin(a)1​
Simplify cos(4π​)cos(a)+sin(4π​)sin(a)1​:cos(a)+sin(a)2​​
cos(4π​)cos(a)+sin(4π​)sin(a)1​
cos(4π​)cos(a)+sin(4π​)sin(a)=22​​cos(a)+22​​sin(a)
cos(4π​)cos(a)+sin(4π​)sin(a)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(a)+sin(4π​)sin(a)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(a)+22​​sin(a)
=22​​cos(a)+22​​sin(a)1​
Multiply 22​​cos(a):22​cos(a)​
22​​cos(a)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(a)​
=22​cos(a)​+22​​sin(a)1​
Multiply 22​​sin(a):22​sin(a)​
22​​sin(a)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(a)​
=22​cos(a)​+22​sin(a)​1​
Combine the fractions 22​cos(a)​+22​sin(a)​:22​cos(a)+2​sin(a)​
Apply rule ca​±cb​=ca±b​=22​cos(a)+2​sin(a)​
=22​cos(a)+2​sin(a)​1​
Apply the fraction rule: cb​1​=bc​=2​cos(a)+2​sin(a)2​
Factor out common term 2​=2​(cos(a)+sin(a))2​
Cancel 2​(cos(a)+sin(a))2​:cos(a)+sin(a)2​​
2​(cos(a)+sin(a))2​
Apply radical rule: 2​=221​=221​(cos(a)+sin(a))2​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=cos(a)+sin(a)21−21​​
Subtract the numbers: 1−21​=21​=cos(a)+sin(a)221​​
Apply radical rule: 221​=2​=cos(a)+sin(a)2​​
=cos(a)+sin(a)2​​
=cos(a)+sin(a)2​​
=sec(4π​+a)cos(a)+sin(a)2​​
Rewrite using trig identities
sec(4π​+a)
Use the basic trigonometric identity: sec(x)=cos(x)1​=cos(4π​+a)1​
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(4π​)cos(a)−sin(4π​)sin(a)1​
Simplify cos(4π​)cos(a)−sin(4π​)sin(a)1​:cos(a)−sin(a)2​​
cos(4π​)cos(a)−sin(4π​)sin(a)1​
cos(4π​)cos(a)−sin(4π​)sin(a)=22​​cos(a)−22​​sin(a)
cos(4π​)cos(a)−sin(4π​)sin(a)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(a)−sin(4π​)sin(a)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(a)−22​​sin(a)
=22​​cos(a)−22​​sin(a)1​
Multiply 22​​cos(a):22​cos(a)​
22​​cos(a)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(a)​
=22​cos(a)​−22​​sin(a)1​
Multiply 22​​sin(a):22​sin(a)​
22​​sin(a)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(a)​
=22​cos(a)​−22​sin(a)​1​
Combine the fractions 22​cos(a)​−22​sin(a)​:22​cos(a)−2​sin(a)​
Apply rule ca​±cb​=ca±b​=22​cos(a)−2​sin(a)​
=22​cos(a)−2​sin(a)​1​
Apply the fraction rule: cb​1​=bc​=2​cos(a)−2​sin(a)2​
Factor out common term 2​=2​(cos(a)−sin(a))2​
Cancel 2​(cos(a)−sin(a))2​:cos(a)−sin(a)2​​
2​(cos(a)−sin(a))2​
Apply radical rule: 2​=221​=221​(cos(a)−sin(a))2​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=cos(a)−sin(a)21−21​​
Subtract the numbers: 1−21​=21​=cos(a)−sin(a)221​​
Apply radical rule: 221​=2​=cos(a)−sin(a)2​​
=cos(a)−sin(a)2​​
=cos(a)−sin(a)2​​
=cos(a)−sin(a)2​​⋅cos(a)+sin(a)2​​
Simplify cos(a)−sin(a)2​​⋅cos(a)+sin(a)2​​:(cos(a)−sin(a))(cos(a)+sin(a))2​
cos(a)−sin(a)2​​⋅cos(a)+sin(a)2​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=(cos(a)−sin(a))(cos(a)+sin(a))2​2​​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=(cos(a)−sin(a))(cos(a)+sin(a))2​
=(cos(a)−sin(a))(cos(a)+sin(a))2​
Manipulating right side2sec(2a)
Express with sin, cos
2sec(2a)
Use the basic trigonometric identity: sec(x)=cos(x)1​=2⋅cos(2a)1​
Simplify 2⋅cos(2a)1​:cos(2a)2​
2⋅cos(2a)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos(2a)1⋅2​
Multiply the numbers: 1⋅2=2=cos(2a)2​
=cos(2a)2​
=cos(2a)2​
Rewrite using trig identities
cos(2a)2​
Use the Double Angle identity: cos(2x)=cos2(x)−sin2(x)=cos2(a)−sin2(a)2​
=cos2(a)−sin2(a)2​
Factor cos2(a)−sin2(a):(cos(a)+sin(a))(cos(a)−sin(a))
cos2(a)−sin2(a)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)cos2(a)−sin2(a)=(cos(a)+sin(a))(cos(a)−sin(a))=(cos(a)+sin(a))(cos(a)−sin(a))
=(cos(a)+sin(a))(cos(a)−sin(a))2​
We showed that the two sides could take the same form⇒True

Popular Examples

prove cot^2(v/2)=((sec(v)+1))/((sec(v)-1))prove cot(3)=(cos(3))/(sin(3))prove cos(2θ)-cos(θ)+1=0prove (-sin(-a))/(cos(-a))=tan(a)prove (csc(z))/(sec(z))=cot(z)

Frequently Asked Questions (FAQ)

  • Is sec(pi/4+a)sec(pi/4-a)=2sec(2a) ?

    The answer to whether sec(pi/4+a)sec(pi/4-a)=2sec(2a) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024