Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove (tan(2x)+tan(x))/(1-tan(2x)tan(x))=tan(3x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove 1−tan(2x)tan(x)tan(2x)+tan(x)​=tan(3x)

Solution

True
Solution steps
1−tan(2x)tan(x)tan(2x)+tan(x)​=tan(3x)
Manipulating left side1−tan(2x)tan(x)tan(2x)+tan(x)​
Rewrite using trig identities
1−tan(2x)tan(x)tan(2x)+tan(x)​
Use the Double Angle identity: tan(2x)=1−tan2(x)2tan(x)​=1−1−tan2(x)2tan(x)​tan(x)1−tan2(x)2tan(x)​+tan(x)​
Simplify 1−1−tan2(x)2tan(x)​tan(x)1−tan2(x)2tan(x)​+tan(x)​:1−3tan2(x)3tan(x)−tan3(x)​
1−1−tan2(x)2tan(x)​tan(x)1−tan2(x)2tan(x)​+tan(x)​
1−tan2(x)2tan(x)​tan(x)=1−tan2(x)2tan2(x)​
1−tan2(x)2tan(x)​tan(x)
Multiply fractions: a⋅cb​=ca⋅b​=1−tan2(x)2tan(x)tan(x)​
2tan(x)tan(x)=2tan2(x)
2tan(x)tan(x)
Apply exponent rule: ab⋅ac=ab+ctan(x)tan(x)=tan1+1(x)=2tan1+1(x)
Add the numbers: 1+1=2=2tan2(x)
=1−tan2(x)2tan2(x)​
=1−−tan2(x)+12tan2(x)​−tan2(x)+12tan(x)​+tan(x)​
Join 1−tan2(x)2tan(x)​+tan(x):1−tan2(x)3tan(x)−tan3(x)​
1−tan2(x)2tan(x)​+tan(x)
Convert element to fraction: tan(x)=1−tan2(x)tan(x)(1−tan2(x))​=1−tan2(x)2tan(x)​+1−tan2(x)tan(x)(1−tan2(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−tan2(x)2tan(x)+tan(x)(1−tan2(x))​
Expand 2tan(x)+tan(x)(1−tan2(x)):3tan(x)−tan3(x)
2tan(x)+tan(x)(1−tan2(x))
Expand tan(x)(1−tan2(x)):tan(x)−tan3(x)
tan(x)(1−tan2(x))
Apply the distributive law: a(b−c)=ab−aca=tan(x),b=1,c=tan2(x)=tan(x)⋅1−tan(x)tan2(x)
=1⋅tan(x)−tan2(x)tan(x)
Simplify 1⋅tan(x)−tan2(x)tan(x):tan(x)−tan3(x)
1⋅tan(x)−tan2(x)tan(x)
1⋅tan(x)=tan(x)
1⋅tan(x)
Multiply: 1⋅tan(x)=tan(x)=tan(x)
tan2(x)tan(x)=tan3(x)
tan2(x)tan(x)
Apply exponent rule: ab⋅ac=ab+ctan2(x)tan(x)=tan2+1(x)=tan2+1(x)
Add the numbers: 2+1=3=tan3(x)
=tan(x)−tan3(x)
=tan(x)−tan3(x)
=2tan(x)+tan(x)−tan3(x)
Add similar elements: 2tan(x)+tan(x)=3tan(x)=3tan(x)−tan3(x)
=1−tan2(x)3tan(x)−tan3(x)​
=1−−tan2(x)+12tan2(x)​1−tan2(x)3tan(x)−tan3(x)​​
Apply the fraction rule: acb​​=c⋅ab​=(1−tan2(x))(1−1−tan2(x)2tan2(x)​)3tan(x)−tan3(x)​
Join 1−1−tan2(x)2tan2(x)​:1−tan2(x)1−3tan2(x)​
1−1−tan2(x)2tan2(x)​
Convert element to fraction: 1=1−tan2(x)1(1−tan2(x))​=1−tan2(x)1⋅(1−tan2(x))​−1−tan2(x)2tan2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−tan2(x)1⋅(1−tan2(x))−2tan2(x)​
1⋅(1−tan2(x))−2tan2(x)=1−3tan2(x)
1⋅(1−tan2(x))−2tan2(x)
1⋅(1−tan2(x))=1−tan2(x)
1⋅(1−tan2(x))
Multiply: 1⋅(1−tan2(x))=(1−tan2(x))=(1−tan2(x))
Remove parentheses: (a)=a=1−tan2(x)
=1−tan2(x)−2tan2(x)
Add similar elements: −tan2(x)−2tan2(x)=−3tan2(x)=1−3tan2(x)
=1−tan2(x)1−3tan2(x)​
=−tan2(x)+1−3tan2(x)+1​(−tan2(x)+1)3tan(x)−tan3(x)​
Multiply (1−tan2(x))1−tan2(x)1−3tan2(x)​:1−3tan2(x)
(1−tan2(x))1−tan2(x)1−3tan2(x)​
Multiply fractions: a⋅cb​=ca⋅b​=1−tan2(x)(1−3tan2(x))(1−tan2(x))​
Cancel the common factor: 1−tan2(x)=1−3tan2(x)
=1−3tan2(x)3tan(x)−tan3(x)​
=1−3tan2(x)3tan(x)−tan3(x)​
=1−3tan2(x)3tan(x)−tan3(x)​
Manipulating right sidetan(3x)
Rewrite using trig identities
tan(3x)
Use the following identity:tan(3x)=1−3tan2(x)3tan(x)−tan3(x)​
tan(3x)
Rewrite using trig identities
tan(3x)
Rewrite as=tan(2x+x)
Use the Angle Sum identity: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(2x)tan(x)tan(2x)+tan(x)​
=1−tan(2x)tan(x)tan(2x)+tan(x)​
Use the Double Angle identity: tan(2x)=1−tan2(x)2tan(x)​=1−1−tan2(x)2tan(x)​tan(x)1−tan2(x)2tan(x)​+tan(x)​
Simplify 1−1−tan2(x)2tan(x)​tan(x)1−tan2(x)2tan(x)​+tan(x)​:1−3tan2(x)3tan(x)−tan3(x)​
1−1−tan2(x)2tan(x)​tan(x)1−tan2(x)2tan(x)​+tan(x)​
1−tan2(x)2tan(x)​tan(x)=1−tan2(x)2tan2(x)​
1−tan2(x)2tan(x)​tan(x)
Multiply fractions: a⋅cb​=ca⋅b​=1−tan2(x)2tan(x)tan(x)​
2tan(x)tan(x)=2tan2(x)
2tan(x)tan(x)
Apply exponent rule: ab⋅ac=ab+ctan(x)tan(x)=tan1+1(x)=2tan1+1(x)
Add the numbers: 1+1=2=2tan2(x)
=1−tan2(x)2tan2(x)​
=1−−tan2(x)+12tan2(x)​−tan2(x)+12tan(x)​+tan(x)​
Join 1−tan2(x)2tan(x)​+tan(x):1−tan2(x)3tan(x)−tan3(x)​
1−tan2(x)2tan(x)​+tan(x)
Convert element to fraction: tan(x)=1−tan2(x)tan(x)(1−tan2(x))​=1−tan2(x)2tan(x)​+1−tan2(x)tan(x)(1−tan2(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−tan2(x)2tan(x)+tan(x)(1−tan2(x))​
Expand 2tan(x)+tan(x)(1−tan2(x)):3tan(x)−tan3(x)
2tan(x)+tan(x)(1−tan2(x))
Expand tan(x)(1−tan2(x)):tan(x)−tan3(x)
tan(x)(1−tan2(x))
Apply the distributive law: a(b−c)=ab−aca=tan(x),b=1,c=tan2(x)=tan(x)1−tan(x)tan2(x)
=1tan(x)−tan2(x)tan(x)
Simplify 1⋅tan(x)−tan2(x)tan(x):tan(x)−tan3(x)
1tan(x)−tan2(x)tan(x)
1⋅tan(x)=tan(x)
1tan(x)
Multiply: 1⋅tan(x)=tan(x)=tan(x)
tan2(x)tan(x)=tan3(x)
tan2(x)tan(x)
Apply exponent rule: ab⋅ac=ab+ctan2(x)tan(x)=tan2+1(x)=tan2+1(x)
Add the numbers: 2+1=3=tan3(x)
=tan(x)−tan3(x)
=tan(x)−tan3(x)
=2tan(x)+tan(x)−tan3(x)
Add similar elements: 2tan(x)+tan(x)=3tan(x)=3tan(x)−tan3(x)
=1−tan2(x)3tan(x)−tan3(x)​
=1−−tan2(x)+12tan2(x)​1−tan2(x)3tan(x)−tan3(x)​​
Apply the fraction rule: acb​​=c⋅ab​=(1−tan2(x))(1−1−tan2(x)2tan2(x)​)3tan(x)−tan3(x)​
Join 1−1−tan2(x)2tan2(x)​:1−tan2(x)1−3tan2(x)​
1−1−tan2(x)2tan2(x)​
Convert element to fraction: 1=1−tan2(x)1(1−tan2(x))​=1−tan2(x)1(1−tan2(x))​−1−tan2(x)2tan2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−tan2(x)1(1−tan2(x))−2tan2(x)​
1⋅(1−tan2(x))−2tan2(x)=1−3tan2(x)
1(1−tan2(x))−2tan2(x)
1⋅(1−tan2(x))=1−tan2(x)
1(1−tan2(x))
Multiply: 1⋅(1−tan2(x))=(1−tan2(x))=1−tan2(x)
Remove parentheses: (a)=a=1−tan2(x)
=1−tan2(x)−2tan2(x)
Add similar elements: −tan2(x)−2tan2(x)=−3tan2(x)=1−3tan2(x)
=1−tan2(x)1−3tan2(x)​
=−tan2(x)+1−3tan2(x)+1​(−tan2(x)+1)3tan(x)−tan3(x)​
Multiply (1−tan2(x))1−tan2(x)1−3tan2(x)​:1−3tan2(x)
(1−tan2(x))1−tan2(x)1−3tan2(x)​
Multiply fractions: a⋅cb​=ca⋅b​=1−tan2(x)(1−3tan2(x))(1−tan2(x))​
Cancel the common factor: 1−tan2(x)=1−3tan2(x)
=1−3tan2(x)3tan(x)−tan3(x)​
=1−3tan2(x)3tan(x)−tan3(x)​
=1−3tan2(x)3tan(x)−tan3(x)​
=1−3tan2(x)3tan(x)−tan3(x)​
We showed that the two sides could take the same form⇒True

Popular Examples

prove csc(x)*(sin(x)+tan(x))=1+sec(x)prove 1-(1-cos^2(x))/(1-cos(x))=-cos(x)prove (sin(4θ)+sin(2θ))/(cos(4θ)+cos(2θ))=tan(3θ)prove (sec(x)+tan(x))^2=((csc(x)+1))/(csc(x)-1)prove (sin(x))/(-cos(x))=sin(x)+tan(x)

Frequently Asked Questions (FAQ)

  • Is (tan(2x)+tan(x))/(1-tan(2x)tan(x))=tan(3x) ?

    The answer to whether (tan(2x)+tan(x))/(1-tan(2x)tan(x))=tan(3x) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024