Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove tan(11/12 pi)=tan(-pi/(12))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove tan(1211​π)=tan(−12π​)

Solution

True
Solution steps
tan(1211​π)=tan(−12π​)
Manipulating left sidetan(1211​π)
Simplify tan(1211​π):−2+3​
tan(1211​π)
Multiply 1211​π:1211π​
1211​π
Multiply fractions: a⋅cb​=ca⋅b​=1211π​
=tan(1211π​)
Rewrite using trig identities:1−tan(127π​)tan(3π​)tan(127π​)+tan(3π​)​
tan(1211π​)
Write tan(1211π​)as tan(127π​+3π​)=tan(127π​+3π​)
Use the Angle Sum identity: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(127π​)tan(3π​)tan(127π​)+tan(3π​)​
=1−tan(127π​)tan(3π​)tan(127π​)+tan(3π​)​
Rewrite using trig identities:tan(127π​)=−2−3​
tan(127π​)
Rewrite using trig identities:1−tan(3π​)tan(4π​)tan(3π​)+tan(4π​)​
tan(127π​)
Write tan(127π​)as tan(3π​+4π​)=tan(3π​+4π​)
Use the Angle Sum identity: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(3π​)tan(4π​)tan(3π​)+tan(4π​)​
=1−tan(3π​)tan(4π​)tan(3π​)+tan(4π​)​
Use the following trivial identity:tan(3π​)=3​
tan(3π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=3​
Use the following trivial identity:tan(4π​)=1
tan(4π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=1
=1−3​⋅13​+1​
Simplify 1−3​⋅13​+1​:−2−3​
1−3​⋅13​+1​
Multiply: 3​⋅1=3​=1−3​3​+1​
Rationalize 1−3​3​+1​:−2−3​
1−3​3​+1​
Multiply by the conjugate 1+3​1+3​​=(1−3​)(1+3​)(3​+1)(1+3​)​
(3​+1)(1+3​)=4+23​
(3​+1)(1+3​)
Apply exponent rule: ab⋅ac=ab+c(3​+1)(1+3​)=(3​+1)1+1=(3​+1)1+1
Add the numbers: 1+1=2=(3​+1)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=3​,b=1
=(3​)2+23​⋅1+12
Simplify (3​)2+23​⋅1+12:4+23​
(3​)2+23​⋅1+12
Apply rule 1a=112=1=(3​)2+2⋅1⋅3​+1
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
23​⋅1=23​
23​⋅1
Multiply the numbers: 2⋅1=2=23​
=3+23​+1
Add the numbers: 3+1=4=4+23​
=4+23​
(1−3​)(1+3​)=−2
(1−3​)(1+3​)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=1,b=3​=12−(3​)2
Simplify 12−(3​)2:−2
12−(3​)2
Apply rule 1a=112=1=1−(3​)2
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=1−3
Subtract the numbers: 1−3=−2=−2
=−2
=−24+23​​
Apply the fraction rule: −ba​=−ba​=−24+23​​
Cancel 24+23​​:2+3​
24+23​​
Factor 4+23​:2(2+3​)
4+23​
Rewrite as=2⋅2+23​
Factor out common term 2=2(2+3​)
=22(2+3​)​
Divide the numbers: 22​=1=2+3​
=−(2+3​)
Distribute parentheses=−(2)−(3​)
Apply minus-plus rules+(−a)=−a=−2−3​
=−2−3​
=−2−3​
Use the following trivial identity:tan(3π​)=3​
tan(3π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=3​
=1−(−2−3​)3​−2−3​+3​​
Simplify 1−(−2−3​)3​−2−3​+3​​:−2+3​
1−(−2−3​)3​−2−3​+3​​
Add similar elements: −3​+3​=0=1−3​(−2−3​)−2​
Apply the fraction rule: b−a​=−ba​=−1−(−2−3​)3​2​
Expand 1−(−2−3​)3​:4+23​
1−(−2−3​)3​
=1−3​(−2−3​)
Expand −3​(−2−3​):23​+3
−3​(−2−3​)
Apply the distributive law: a(b−c)=ab−aca=−3​,b=−2,c=3​=−3​(−2)−(−3​)3​
Apply minus-plus rules−(−a)=a=23​+3​3​
Apply radical rule: a​a​=a3​3​=3=23​+3
=1+23​+3
Add the numbers: 1+3=4=4+23​
=−4+23​2​
Cancel 4+23​2​:(2+3​)1​
4+23​2​
Factor 4+23​:2(2+3​)
4+23​
Rewrite as=2⋅2+23​
Factor out common term 2=2(2+3​)
=2(2+3​)2​
Divide the numbers: 22​=1=(2+3​)1​
=−(2+3​)1​
Remove parentheses: (a)=a=−2+3​1​
Rationalize −2+3​1​:3​−2
−2+3​1​
Multiply by the conjugate 2−3​2−3​​=−(2+3​)(2−3​)1⋅(2−3​)​
1⋅(2−3​)=2−3​
(2+3​)(2−3​)=1
(2+3​)(2−3​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=2,b=3​=22−(3​)2
Simplify 22−(3​)2:1
22−(3​)2
22=4
22
22=4=4
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=4−3
Subtract the numbers: 4−3=1=1
=1
=−12−3​​
Apply rule 1a​=a=−(2−3​)
Distribute parentheses=−(2)−(−3​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2+3​
=−2+3​
=−2+3​
=−2+3​
Manipulating right sidetan(−12π​)
Use the negative angle identity: tan(−x)=−tan(x)=−tan(12π​)
Simplify −tan(12π​):−2+3​
−tan(12π​)
tan(12π​)=2−3​
tan(12π​)
Rewrite using trig identities:1+tan(4π​)tan(6π​)tan(4π​)−tan(6π​)​
tan(12π​)
Write tan(12π​)as tan(4π​−6π​)=tan(4π​−6π​)
Use the Angle Difference identity: tan(s−t)=1+tan(s)tan(t)tan(s)−tan(t)​=1+tan(4π​)tan(6π​)tan(4π​)−tan(6π​)​
=1+tan(4π​)tan(6π​)tan(4π​)−tan(6π​)​
Use the following trivial identity:tan(4π​)=1
tan(4π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=1
Use the following trivial identity:tan(6π​)=33​​
tan(6π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=33​​
=1+1⋅33​​1−33​​​
Simplify 1+1⋅33​​1−33​​​:2−3​
1+1⋅33​​1−33​​​
Multiply: 1⋅33​​=33​​=1+33​​1−33​​​
Join 1+33​​:3​3​+1​
1+33​​
Convert element to fraction: 1=31⋅3​=31⋅3​+33​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31⋅3+3​​
Multiply the numbers: 1⋅3=3=33+3​​
Factor 3+3​:3​(3​+1)
3+3​
3=3​3​=3​3​+3​
Factor out common term 3​=3​(3​+1)
=33​(3​+1)​
Cancel 33​(3​+1)​:3​3​+1​
33​(3​+1)​
Apply radical rule: 3​=321​=3321​(1+3​)​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​+1​
Subtract the numbers: 1−21​=21​=321​3​+1​
Apply radical rule: 321​=3​=3​3​+1​
=3​3​+1​
=3​3​+1​1−33​​​
Join 1−33​​:3​3​−1​
1−33​​
Convert element to fraction: 1=31⋅3​=31⋅3​−33​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31⋅3−3​​
Multiply the numbers: 1⋅3=3=33−3​​
Factor 3−3​:3​(3​−1)
3−3​
3=3​3​=3​3​−3​
Factor out common term 3​=3​(3​−1)
=33​(3​−1)​
Cancel 33​(3​−1)​:3​3​−1​
33​(3​−1)​
Apply radical rule: 3​=321​=3321​(3​−1)​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​−1​
Subtract the numbers: 1−21​=21​=321​3​−1​
Apply radical rule: 321​=3​=3​3​−1​
=3​3​−1​
=3​3​+1​3​3​−1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=3​(3​+1)(3​−1)3​​
Cancel the common factor: 3​=3​+13​−1​
Rationalize 3​+13​−1​:2−3​
3​+13​−1​
Multiply by the conjugate 3​−13​−1​=(3​+1)(3​−1)(3​−1)(3​−1)​
(3​−1)(3​−1)=4−23​
(3​−1)(3​−1)
Apply exponent rule: ab⋅ac=ab+c(3​−1)(3​−1)=(3​−1)1+1=(3​−1)1+1
Add the numbers: 1+1=2=(3​−1)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=3​,b=1
=(3​)2−23​⋅1+12
Simplify (3​)2−23​⋅1+12:4−23​
(3​)2−23​⋅1+12
Apply rule 1a=112=1=(3​)2−2⋅1⋅3​+1
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
23​⋅1=23​
23​⋅1
Multiply the numbers: 2⋅1=2=23​
=3−23​+1
Add the numbers: 3+1=4=4−23​
=4−23​
(3​+1)(3​−1)=2
(3​+1)(3​−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=3​,b=1=(3​)2−12
Simplify (3​)2−12:2
(3​)2−12
Apply rule 1a=112=1=(3​)2−1
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=3−1
Subtract the numbers: 3−1=2=2
=2
=24−23​​
Factor 4−23​:2(2−3​)
4−23​
Rewrite as=2⋅2−23​
Factor out common term 2=2(2−3​)
=22(2−3​)​
Divide the numbers: 22​=1=2−3​
=2−3​
=2−3​
=−(2−3​)
Simplify
−(2−3​)
Distribute parentheses=−(2)−(−3​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2+3​
=−2+3​
=−2+3​
We showed that the two sides could take the same form⇒True

Popular Examples

prove cot(B)sec(B)sin(B)=1prove (cos(x)-tan(x))/(sin(x)-cot(x))=-1prove (1+cot(x))/(csc(x))=sin(x)cos(x)prove sin^2(θ-α)=cos(θ)prove cos(2x)cos(2x)=cos^2(2x)

Frequently Asked Questions (FAQ)

  • Is tan(11/12 pi)=tan(-pi/(12)) ?

    The answer to whether tan(11/12 pi)=tan(-pi/(12)) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024