Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove 2sec(2x)=tan(pi/4+x)+tan(pi/4-x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove 2sec(2x)=tan(4π​+x)+tan(4π​−x)

Solution

True
Solution steps
2sec(2x)=tan(4π​+x)+tan(4π​−x)
Manipulating right sidetan(4π​+x)+tan(4π​−x)
Rewrite using trig identities
tan(4π​+x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(4π​+x)sin(4π​+x)​
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=cos(4π​+x)sin(4π​)cos(x)+cos(4π​)sin(x)​
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(4π​)cos(x)−sin(4π​)sin(x)sin(4π​)cos(x)+cos(4π​)sin(x)​
Simplify cos(4π​)cos(x)−sin(4π​)sin(x)sin(4π​)cos(x)+cos(4π​)sin(x)​:cos(x)−sin(x)cos(x)+sin(x)​
cos(4π​)cos(x)−sin(4π​)sin(x)sin(4π​)cos(x)+cos(4π​)sin(x)​
sin(4π​)cos(x)+cos(4π​)sin(x)=22​​cos(x)+22​​sin(x)
sin(4π​)cos(x)+cos(4π​)sin(x)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)+cos(4π​)sin(x)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)+22​​sin(x)
=cos(4π​)cos(x)−sin(4π​)sin(x)22​​cos(x)+22​​sin(x)​
cos(4π​)cos(x)−sin(4π​)sin(x)=22​​cos(x)−22​​sin(x)
cos(4π​)cos(x)−sin(4π​)sin(x)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)−sin(4π​)sin(x)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)−22​​sin(x)
=22​​cos(x)−22​​sin(x)22​​cos(x)+22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​−22​​sin(x)22​​cos(x)+22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​22​​cos(x)+22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​−22​sin(x)​22​cos(x)​+22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​22​cos(x)​+22​sin(x)​​
Combine the fractions 22​cos(x)​−22​sin(x)​:22​cos(x)−2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)−2​sin(x)​
=22​cos(x)−2​sin(x)​22​cos(x)​+22​sin(x)​​
Combine the fractions 22​cos(x)​+22​sin(x)​:22​cos(x)+2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)+2​sin(x)​
=22​cos(x)−2​sin(x)​22​cos(x)+2​sin(x)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(2​cos(x)−2​sin(x))(2​cos(x)+2​sin(x))⋅2​
Cancel the common factor: 2=2​cos(x)−2​sin(x)2​cos(x)+2​sin(x)​
Factor out common term 2​=2​cos(x)−2​sin(x)2​(cos(x)+sin(x))​
Factor out common term 2​=2​(cos(x)−sin(x))2​(cos(x)+sin(x))​
Cancel the common factor: 2​=cos(x)−sin(x)cos(x)+sin(x)​
=cos(x)−sin(x)cos(x)+sin(x)​
=cos(x)−sin(x)cos(x)+sin(x)​+tan(4π​−x)
Rewrite using trig identities
tan(4π​−x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(4π​−x)sin(4π​−x)​
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=cos(4π​−x)sin(4π​)cos(x)−cos(4π​)sin(x)​
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(4π​)cos(x)+sin(4π​)sin(x)sin(4π​)cos(x)−cos(4π​)sin(x)​
Simplify cos(4π​)cos(x)+sin(4π​)sin(x)sin(4π​)cos(x)−cos(4π​)sin(x)​:cos(x)+sin(x)cos(x)−sin(x)​
cos(4π​)cos(x)+sin(4π​)sin(x)sin(4π​)cos(x)−cos(4π​)sin(x)​
sin(4π​)cos(x)−cos(4π​)sin(x)=22​​cos(x)−22​​sin(x)
sin(4π​)cos(x)−cos(4π​)sin(x)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)−cos(4π​)sin(x)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)−22​​sin(x)
=cos(4π​)cos(x)+sin(4π​)sin(x)22​​cos(x)−22​​sin(x)​
cos(4π​)cos(x)+sin(4π​)sin(x)=22​​cos(x)+22​​sin(x)
cos(4π​)cos(x)+sin(4π​)sin(x)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)+sin(4π​)sin(x)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)+22​​sin(x)
=22​​cos(x)+22​​sin(x)22​​cos(x)−22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​+22​​sin(x)22​​cos(x)−22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​+22​sin(x)​22​​cos(x)−22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​+22​sin(x)​22​cos(x)​−22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​+22​sin(x)​22​cos(x)​−22​sin(x)​​
Combine the fractions 22​cos(x)​+22​sin(x)​:22​cos(x)+2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)+2​sin(x)​
=22​cos(x)+2​sin(x)​22​cos(x)​−22​sin(x)​​
Combine the fractions 22​cos(x)​−22​sin(x)​:22​cos(x)−2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)−2​sin(x)​
=22​cos(x)+2​sin(x)​22​cos(x)−2​sin(x)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(2​cos(x)+2​sin(x))(2​cos(x)−2​sin(x))⋅2​
Cancel the common factor: 2=2​cos(x)+2​sin(x)2​cos(x)−2​sin(x)​
Factor out common term 2​=2​cos(x)+2​sin(x)2​(cos(x)−sin(x))​
Factor out common term 2​=2​(cos(x)+sin(x))2​(cos(x)−sin(x))​
Cancel the common factor: 2​=cos(x)+sin(x)cos(x)−sin(x)​
=cos(x)+sin(x)cos(x)−sin(x)​
=cos(x)−sin(x)cos(x)+sin(x)​+cos(x)+sin(x)cos(x)−sin(x)​
Simplify cos(x)−sin(x)cos(x)+sin(x)​+cos(x)+sin(x)cos(x)−sin(x)​:(cos(x)−sin(x))(cos(x)+sin(x))2cos2(x)+2sin2(x)​
cos(x)−sin(x)cos(x)+sin(x)​+cos(x)+sin(x)cos(x)−sin(x)​
Least Common Multiplier of cos(x)−sin(x),cos(x)+sin(x):(cos(x)−sin(x))(cos(x)+sin(x))
cos(x)−sin(x),cos(x)+sin(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x)−sin(x) or cos(x)+sin(x)=(cos(x)−sin(x))(cos(x)+sin(x))
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM (cos(x)−sin(x))(cos(x)+sin(x))
For cos(x)−sin(x)cos(x)+sin(x)​:multiply the denominator and numerator by cos(x)+sin(x)cos(x)−sin(x)cos(x)+sin(x)​=(cos(x)−sin(x))(cos(x)+sin(x))(cos(x)+sin(x))(cos(x)+sin(x))​=(cos(x)−sin(x))(cos(x)+sin(x))(cos(x)+sin(x))2​
For cos(x)+sin(x)cos(x)−sin(x)​:multiply the denominator and numerator by cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin(x)​=(cos(x)+sin(x))(cos(x)−sin(x))(cos(x)−sin(x))(cos(x)−sin(x))​=(cos(x)−sin(x))(cos(x)+sin(x))(cos(x)−sin(x))2​
=(cos(x)−sin(x))(cos(x)+sin(x))(cos(x)+sin(x))2​+(cos(x)−sin(x))(cos(x)+sin(x))(cos(x)−sin(x))2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=(cos(x)−sin(x))(cos(x)+sin(x))(cos(x)+sin(x))2+(cos(x)−sin(x))2​
Expand (cos(x)+sin(x))2+(cos(x)−sin(x))2:2cos2(x)+2sin2(x)
(cos(x)+sin(x))2+(cos(x)−sin(x))2
(cos(x)+sin(x))2:cos2(x)+2cos(x)sin(x)+sin2(x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=cos(x),b=sin(x)
=cos2(x)+2cos(x)sin(x)+sin2(x)
=cos2(x)+2cos(x)sin(x)+sin2(x)+(cos(x)−sin(x))2
(cos(x)−sin(x))2:cos2(x)−2cos(x)sin(x)+sin2(x)
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=cos(x),b=sin(x)
=cos2(x)−2cos(x)sin(x)+sin2(x)
=cos2(x)+2cos(x)sin(x)+sin2(x)+cos2(x)−2cos(x)sin(x)+sin2(x)
Simplify cos2(x)+2cos(x)sin(x)+sin2(x)+cos2(x)−2cos(x)sin(x)+sin2(x):2cos2(x)+2sin2(x)
cos2(x)+2cos(x)sin(x)+sin2(x)+cos2(x)−2cos(x)sin(x)+sin2(x)
Add similar elements: 2cos(x)sin(x)−2cos(x)sin(x)=0=cos2(x)+sin2(x)+cos2(x)+sin2(x)
Add similar elements: cos2(x)+cos2(x)=2cos2(x)=2cos2(x)+sin2(x)+sin2(x)
Add similar elements: sin2(x)+sin2(x)=2sin2(x)=2cos2(x)+2sin2(x)
=2cos2(x)+2sin2(x)
=(cos(x)−sin(x))(cos(x)+sin(x))2cos2(x)+2sin2(x)​
=(cos(x)−sin(x))(cos(x)+sin(x))2cos2(x)+2sin2(x)​
Factor (cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​:(cos(x)+sin(x))(cos(x)−sin(x))2(cos2(x)+sin2(x))​
(cos(x)+sin(x))(cos(x)−sin(x))2cos2(x)+2sin2(x)​
Factor 2cos2(x)+2sin2(x):2(cos2(x)+sin2(x))
2cos2(x)+2sin2(x)
Factor out common term 2=2(cos2(x)+sin2(x))
=(cos(x)+sin(x))(cos(x)−sin(x))2(cos2(x)+sin2(x))​
=(cos(x)+sin(x))(cos(x)−sin(x))(cos2(x)+sin2(x))⋅2​
Rewrite using trig identities
(cos(x)+sin(x))(cos(x)−sin(x))(cos2(x)+sin2(x))⋅2​
Use the Pythagorean identity: cos2(x)+sin2(x)=1=(cos(x)+sin(x))(cos(x)−sin(x))1⋅2​
Simplify=(cos(x)+sin(x))(cos(x)−sin(x))2​
Expand (cos(x)+sin(x))(cos(x)−sin(x)):cos2(x)−sin2(x)
(cos(x)+sin(x))(cos(x)−sin(x))
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=cos(x),b=sin(x)=cos2(x)−sin2(x)
=cos2(x)−sin2(x)2​
Use the Double Angle identity: cos2(x)−sin2(x)=cos(2x)=cos(2x)2​
=cos(2x)2​
Rewrite using trig identities
Use the basic trigonometric identity: cos(x)=sec(x)1​sec(2x)1​2​
Simplify
sec(2x)1​2​
Apply the fraction rule: cb​a​=ba⋅c​=12sec(2x)​
Apply rule 1a​=a=2sec(2x)
2sec(2x)
2sec(2x)
We showed that the two sides could take the same form⇒True

Popular Examples

prove sin(x)-csc(x)=-(cos(x))(cot(x))prove cos(θ)=sin(3θ+62)prove sin(pi*x)+sin(pi*(10-x))=0prove cot(2θ)= 1/2 (tan(θ)-cot(θ))prove sin(4x)=(2)(sin(2x))(cos(2x))

Frequently Asked Questions (FAQ)

  • Is 2sec(2x)=tan(pi/4+x)+tan(pi/4-x) ?

    The answer to whether 2sec(2x)=tan(pi/4+x)+tan(pi/4-x) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024