Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove sec(t)(csc(t)(tan(t)+cot(t)))=sec^2(t)+csc^2(t)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove sec(t)(csc(t)(tan(t)+cot(t)))=sec2(t)+csc2(t)

Solution

True
Solution steps
sec(t)csc(t)(tan(t)+cot(t))=sec2(t)+csc2(t)
Manipulating left sidesec(t)csc(t)(tan(t)+cot(t))
Express with sin, cos
(cot(t)+tan(t))csc(t)sec(t)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=(sin(t)cos(t)​+tan(t))csc(t)sec(t)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=(sin(t)cos(t)​+cos(t)sin(t)​)csc(t)sec(t)
Use the basic trigonometric identity: csc(x)=sin(x)1​=(sin(t)cos(t)​+cos(t)sin(t)​)sin(t)1​sec(t)
Use the basic trigonometric identity: sec(x)=cos(x)1​=(sin(t)cos(t)​+cos(t)sin(t)​)sin(t)1​⋅cos(t)1​
Simplify (sin(t)cos(t)​+cos(t)sin(t)​)sin(t)1​⋅cos(t)1​:sin2(t)cos2(t)cos2(t)+sin2(t)​
(sin(t)cos(t)​+cos(t)sin(t)​)sin(t)1​⋅cos(t)1​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=sin(t)cos(t)1⋅1⋅(sin(t)cos(t)​+cos(t)sin(t)​)​
1⋅1⋅(sin(t)cos(t)​+cos(t)sin(t)​)=sin(t)cos(t)​+cos(t)sin(t)​
1⋅1⋅(sin(t)cos(t)​+cos(t)sin(t)​)
Multiply: 1⋅1⋅(sin(t)cos(t)​+cos(t)sin(t)​)=(sin(t)cos(t)​+cos(t)sin(t)​)=(sin(t)cos(t)​+cos(t)sin(t)​)
Remove parentheses: (a)=a=sin(t)cos(t)​+cos(t)sin(t)​
=sin(t)cos(t)sin(t)cos(t)​+cos(t)sin(t)​​
Join sin(t)cos(t)​+cos(t)sin(t)​:sin(t)cos(t)cos2(t)+sin2(t)​
sin(t)cos(t)​+cos(t)sin(t)​
Least Common Multiplier of sin(t),cos(t):sin(t)cos(t)
sin(t),cos(t)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(t) or cos(t)=sin(t)cos(t)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(t)cos(t)
For sin(t)cos(t)​:multiply the denominator and numerator by cos(t)sin(t)cos(t)​=sin(t)cos(t)cos(t)cos(t)​=sin(t)cos(t)cos2(t)​
For cos(t)sin(t)​:multiply the denominator and numerator by sin(t)cos(t)sin(t)​=cos(t)sin(t)sin(t)sin(t)​=sin(t)cos(t)sin2(t)​
=sin(t)cos(t)cos2(t)​+sin(t)cos(t)sin2(t)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(t)cos(t)cos2(t)+sin2(t)​
=sin(t)cos(t)sin(t)cos(t)cos2(t)+sin2(t)​​
Apply the fraction rule: acb​​=c⋅ab​=sin(t)cos(t)sin(t)cos(t)cos2(t)+sin2(t)​
sin(t)cos(t)sin(t)cos(t)=sin2(t)cos2(t)
sin(t)cos(t)sin(t)cos(t)
Apply exponent rule: ab⋅ac=ab+ccos(t)cos(t)=cos1+1(t)=sin(t)sin(t)cos1+1(t)
Add the numbers: 1+1=2=sin(t)sin(t)cos2(t)
Apply exponent rule: ab⋅ac=ab+csin(t)sin(t)=sin1+1(t)=sin1+1(t)cos2(t)
Add the numbers: 1+1=2=sin2(t)cos2(t)
=sin2(t)cos2(t)cos2(t)+sin2(t)​
=sin2(t)cos2(t)cos2(t)+sin2(t)​
=cos2(t)sin2(t)cos2(t)+sin2(t)​
Rewrite using trig identities
Use the basic trigonometric identity: sin(x)=csc(x)1​cos2(t)(csc(t)1​)2cos2(t)+(csc(t)1​)2​
Use the basic trigonometric identity: cos(x)=sec(x)1​(sec(t)1​)2(csc(t)1​)2(sec(t)1​)2+(csc(t)1​)2​
Simplify
(sec(t)1​)2(csc(t)1​)2(sec(t)1​)2+(csc(t)1​)2​
(sec(t)1​)2=sec2(t)1​
(sec(t)1​)2
Apply exponent rule: (ba​)c=bcac​=sec2(t)12​
Apply rule 1a=112=1=sec2(t)1​
=(csc(t)1​)2sec2(t)1​(sec(t)1​)2+(csc(t)1​)2​
(csc(t)1​)2=csc2(t)1​
(csc(t)1​)2
Apply exponent rule: (ba​)c=bcac​=csc2(t)12​
Apply rule 1a=112=1=csc2(t)1​
=sec2(t)1​⋅csc2(t)1​(sec(t)1​)2+(csc(t)1​)2​
(sec(t)1​)2=sec2(t)1​
(sec(t)1​)2
Apply exponent rule: (ba​)c=bcac​=sec2(t)12​
Apply rule 1a=112=1=sec2(t)1​
(csc(t)1​)2=csc2(t)1​
(csc(t)1​)2
Apply exponent rule: (ba​)c=bcac​=csc2(t)12​
Apply rule 1a=112=1=csc2(t)1​
=sec2(t)1​⋅csc2(t)1​sec2(t)1​+csc2(t)1​​
Multiply sec2(t)1​⋅csc2(t)1​:sec2(t)csc2(t)1​
sec2(t)1​⋅csc2(t)1​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sec2(t)csc2(t)1⋅1​
Multiply the numbers: 1⋅1=1=sec2(t)csc2(t)1​
=sec2(t)csc2(t)1​sec2(t)1​+csc2(t)1​​
Join sec2(t)1​+csc2(t)1​:sec2(t)csc2(t)csc2(t)+sec2(t)​
sec2(t)1​+csc2(t)1​
Least Common Multiplier of sec2(t),csc2(t):sec2(t)csc2(t)
sec2(t),csc2(t)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sec2(t) or csc2(t)=sec2(t)csc2(t)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sec2(t)csc2(t)
For sec2(t)1​:multiply the denominator and numerator by csc2(t)sec2(t)1​=sec2(t)csc2(t)1⋅csc2(t)​=sec2(t)csc2(t)csc2(t)​
For csc2(t)1​:multiply the denominator and numerator by sec2(t)csc2(t)1​=csc2(t)sec2(t)1⋅sec2(t)​=sec2(t)csc2(t)sec2(t)​
=sec2(t)csc2(t)csc2(t)​+sec2(t)csc2(t)sec2(t)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sec2(t)csc2(t)csc2(t)+sec2(t)​
=sec2(t)csc2(t)1​sec2(t)csc2(t)csc2(t)+sec2(t)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=sec2(t)csc2(t)⋅1(csc2(t)+sec2(t))sec2(t)csc2(t)​
Refine=sec2(t)csc2(t)(csc2(t)+sec2(t))sec2(t)csc2(t)​
Cancel the common factor: sec2(t)=csc2(t)(csc2(t)+sec2(t))csc2(t)​
Cancel the common factor: csc2(t)=csc2(t)+sec2(t)
csc2(t)+sec2(t)
csc2(t)+sec2(t)
=sec2(t)+csc2(t)
We showed that the two sides could take the same form⇒True

Popular Examples

prove (1+sin(x))^2+cos^2(x)=2+2sin(x)prove cot(60)=(cos(60))/(sin(60))prove tan(-x)tan(pi/2-x)=-1prove tan(pi-θ)=-tan(x)prove cot(θ)(sin(θ)+tan(θ))=cos(θ)+1

Frequently Asked Questions (FAQ)

  • Is sec(t)(csc(t)(tan(t)+cot(t)))=sec^2(t)+csc^2(t) ?

    The answer to whether sec(t)(csc(t)(tan(t)+cot(t)))=sec^2(t)+csc^2(t) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024