Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/(sin^2(x))-1/(cos^2(x))>= 8/3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(x)1​−cos2(x)1​≥38​

Solution

2πn<x≤6π​+2πnor65π​+2πn≤x<π+2πnorπ+2πn<x≤67π​+2πnor611π​+2πn≤x<2π+2πn
+2
Interval Notation
(2πn,6π​+2πn]∪[65π​+2πn,π+2πn)∪(π+2πn,67π​+2πn]∪[611π​+2πn,2π+2πn)
Decimal
2πn<x≤0.52359…+2πnor2.61799…+2πn≤x<3.14159…+2πnor3.14159…+2πn<x≤3.66519…+2πnor5.75958…+2πn≤x<6.28318…+2πn
Solution steps
sin2(x)1​−cos2(x)1​≥38​
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)sin2(x)1​−1−sin2(x)1​≥38​
Let: v=sin(x)v21​−1−v21​≥38​
v21​−1−v21​≥38​:−23​​≤v<−1or−21​≤v<0or0<v≤21​or1<v≤23​​
v21​−1−v21​≥38​
Rewrite in standard form
v21​−1−v21​≥38​
Subtract 38​ from both sidesv21​−1−v21​−38​≥38​−38​
Simplifyv21​−1−v21​−38​≥0
Simplify v21​−1−v21​−38​:3v2(v+1)(v−1)−8v4+14v2−3​
v21​−1−v21​−38​
Factor −v2+1:−(v+1)(v−1)
−v2+1
Factor out common term −1=−(v2−1)
Factor v2−1:(v+1)(v−1)
v2−1
Rewrite 1 as 12=v2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)v2−12=(v+1)(v−1)=(v+1)(v−1)
=−(v+1)(v−1)
=v21​−−(v+1)(v−1)1​−38​
Least Common Multiplier of v2,−(v+1)(v−1),3:3v2(v+1)(v−1)
v2,−(v+1)(v−1),3
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=3v2(v+1)(v−1)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3v2(v+1)(v−1)
For v21​:multiply the denominator and numerator by 3(v+1)(v−1)v21​=v2⋅3(v+1)(v−1)1⋅3(v+1)(v−1)​=3v2(v+1)(v−1)3(v+1)(v−1)​
For −(v+1)(v−1)1​:multiply the denominator and numerator by −3v2−(v+1)(v−1)1​=(−(v+1)(v−1))(−3v2)1⋅(−3v2)​=3v2(v+1)(v−1)−3v2​
For 38​:multiply the denominator and numerator by v2(v+1)(v−1)38​=3v2(v+1)(v−1)8v2(v+1)(v−1)​
=3v2(v+1)(v−1)3(v+1)(v−1)​−3v2(v+1)(v−1)−3v2​−3v2(v+1)(v−1)8v2(v+1)(v−1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3v2(v+1)(v−1)3(v+1)(v−1)−(−3v2)−8v2(v+1)(v−1)​
Apply rule −(−a)=a=3v2(v+1)(v−1)3(v+1)(v−1)+3v2−8v2(v+1)(v−1)​
Expand 3(v+1)(v−1)+3v2−8v2(v+1)(v−1):−8v4+14v2−3
3(v+1)(v−1)+3v2−8v2(v+1)(v−1)
Expand 3(v+1)(v−1):3v2−3
Expand (v+1)(v−1):v2−1
(v+1)(v−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=v,b=1=v2−12
Apply rule 1a=112=1=v2−1
=3(v2−1)
Expand 3(v2−1):3v2−3
3(v2−1)
Apply the distributive law: a(b−c)=ab−aca=3,b=v2,c=1=3v2−3⋅1
Multiply the numbers: 3⋅1=3=3v2−3
=3v2−3
=3v2−3+3v2−8v2(v+1)(v−1)
Expand −8v2(v+1)(v−1):−8v4+8v2
Expand (v+1)(v−1):v2−1
(v+1)(v−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=v,b=1=v2−12
Apply rule 1a=112=1=v2−1
=−8v2(v2−1)
Expand −8v2(v2−1):−8v4+8v2
−8v2(v2−1)
Apply the distributive law: a(b−c)=ab−aca=−8v2,b=v2,c=1=−8v2v2−(−8v2)⋅1
Apply minus-plus rules−(−a)=a=−8v2v2+8⋅1⋅v2
Simplify −8v2v2+8⋅1⋅v2:−8v4+8v2
−8v2v2+8⋅1⋅v2
8v2v2=8v4
8v2v2
Apply exponent rule: ab⋅ac=ab+cv2v2=v2+2=8v2+2
Add the numbers: 2+2=4=8v4
8⋅1⋅v2=8v2
8⋅1⋅v2
Multiply the numbers: 8⋅1=8=8v2
=−8v4+8v2
=−8v4+8v2
=−8v4+8v2
=3v2−3+3v2−8v4+8v2
Simplify 3v2−3+3v2−8v4+8v2:−8v4+14v2−3
3v2−3+3v2−8v4+8v2
Group like terms=−8v4+3v2+3v2+8v2−3
Add similar elements: 3v2+3v2+8v2=14v2=−8v4+14v2−3
=−8v4+14v2−3
=3v2(v+1)(v−1)−8v4+14v2−3​
3v2(v+1)(v−1)−8v4+14v2−3​≥0
Multiply both sides by 33v2(v+1)(v−1)3(−8v4+14v2−3)​≥0⋅3
Simplifyv2(v+1)(v−1)−8v4+14v2−3​≥0
v2(v+1)(v−1)−8v4+14v2−3​≥0
Factor v2(v+1)(v−1)−8v4+14v2−3​:v2(v+1)(v−1)−(2v+1)(2v−1)(2​v+3​)(2​v−3​)​
v2(v+1)(v−1)−8v4+14v2−3​
Factor −8v4+14v2−3:−(2v+1)(2v−1)(2​v+3​)(2​v−3​)
−8v4+14v2−3
Factor out common term −1=−(8v4−14v2+3)
Factor 8v4−14v2+3:(2v+1)(2v−1)(2​v+3​)(2​v−3​)
8v4−14v2+3
Let u=v2=8u2−14u+3
Factor 8u2−14u+3:(4u−1)(2u−3)
8u2−14u+3
Break the expression into groups
8u2−14u+3
Definition
Factors of 24:1,2,3,4,6,8,12,24
24
Divisors (Factors)
Find the Prime factors of 24:2,2,2,3
24
24divides by 224=12⋅2=2⋅12
12divides by 212=6⋅2=2⋅2⋅6
6divides by 26=3⋅2=2⋅2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3
Multiply the prime factors of 24:4,8,6,12
2⋅2=42⋅2⋅2=8
4,8,6,12
4,8,6,12
Add the prime factors: 2,3
Add 1 and the number 24 itself1,24
The factors of 241,2,3,4,6,8,12,24
Negative factors of 24:−1,−2,−3,−4,−6,−8,−12,−24
Multiply the factors by −1 to get the negative factors−1,−2,−3,−4,−6,−8,−12,−24
For every two factors such that u∗v=24,check if u+v=−14
Check u=1,v=24:u∗v=24,u+v=25⇒FalseCheck u=2,v=12:u∗v=24,u+v=14⇒False
u=−2,v=−12
Group into (ax2+ux)+(vx+c)(8u2−2u)+(−12u+3)
=(8u2−2u)+(−12u+3)
Factor out 2ufrom 8u2−2u:2u(4u−1)
8u2−2u
Apply exponent rule: ab+c=abacu2=uu=8uu−2u
Rewrite 8 as 2⋅4=2⋅4uu−2u
Factor out common term 2u=2u(4u−1)
Factor out −3from −12u+3:−3(4u−1)
−12u+3
Rewrite 12 as 3⋅4=−3⋅4u+3
Factor out common term −3=−3(4u−1)
=2u(4u−1)−3(4u−1)
Factor out common term 4u−1=(4u−1)(2u−3)
=(4u−1)(2u−3)
Substitute back u=v2=(4v2−1)(2v2−3)
Factor 4v2−1:(2v+1)(2v−1)
4v2−1
Rewrite 4v2−1 as (2v)2−12
4v2−1
Rewrite 4 as 22=22v2−1
Rewrite 1 as 12=22v2−12
Apply exponent rule: ambm=(ab)m22v2=(2v)2=(2v)2−12
=(2v)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2v)2−12=(2v+1)(2v−1)=(2v+1)(2v−1)
=(2v+1)(2v−1)(2v2−3)
Factor 2v2−3:(2​v+3​)(2​v−3​)
2v2−3
Rewrite 2v2−3 as (2​v)2−(3​)2
2v2−3
Apply radical rule: a=(a​)22=(2​)2=(2​)2v2−3
Apply radical rule: a=(a​)23=(3​)2=(2​)2v2−(3​)2
Apply exponent rule: ambm=(ab)m(2​)2v2=(2​v)2=(2​v)2−(3​)2
=(2​v)2−(3​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​v)2−(3​)2=(2​v+3​)(2​v−3​)=(2​v+3​)(2​v−3​)
=(2v+1)(2v−1)(2​v+3​)(2​v−3​)
=−(2v+1)(2v−1)(2​v+3​)(2​v−3​)
=v2(v+1)(v−1)−(2v+1)(2v−1)(2​v+3​)(2​v−3​)​
v2(v+1)(v−1)−(2v+1)(2v−1)(2​v+3​)(2​v−3​)​≥0
Multiply both sides by −1 (reverse the inequality)v2(v+1)(v−1)(−(2v+1)(2v−1)(2​v+3​)(2​v−3​))(−1)​≤0⋅(−1)
Simplifyv2(v+1)(v−1)(2v+1)(2v−1)(2​v+3​)(2​v−3​)​≤0
Identify the intervals
Find the signs of the factors of v2(v+1)(v−1)(2v+1)(2v−1)(2​v+3​)(2​v−3​)​
Find the signs of 2v+1
2v+1=0:v=−21​
2v+1=0
Move 1to the right side
2v+1=0
Subtract 1 from both sides2v+1−1=0−1
Simplify2v=−1
2v=−1
Divide both sides by 2
2v=−1
Divide both sides by 222v​=2−1​
Simplifyv=−21​
v=−21​
2v+1<0:v<−21​
2v+1<0
Move 1to the right side
2v+1<0
Subtract 1 from both sides2v+1−1<0−1
Simplify2v<−1
2v<−1
Divide both sides by 2
2v<−1
Divide both sides by 222v​<2−1​
Simplifyv<−21​
v<−21​
2v+1>0:v>−21​
2v+1>0
Move 1to the right side
2v+1>0
Subtract 1 from both sides2v+1−1>0−1
Simplify2v>−1
2v>−1
Divide both sides by 2
2v>−1
Divide both sides by 222v​>2−1​
Simplifyv>−21​
v>−21​
Find the signs of 2v−1
2v−1=0:v=21​
2v−1=0
Move 1to the right side
2v−1=0
Add 1 to both sides2v−1+1=0+1
Simplify2v=1
2v=1
Divide both sides by 2
2v=1
Divide both sides by 222v​=21​
Simplifyv=21​
v=21​
2v−1<0:v<21​
2v−1<0
Move 1to the right side
2v−1<0
Add 1 to both sides2v−1+1<0+1
Simplify2v<1
2v<1
Divide both sides by 2
2v<1
Divide both sides by 222v​<21​
Simplifyv<21​
v<21​
2v−1>0:v>21​
2v−1>0
Move 1to the right side
2v−1>0
Add 1 to both sides2v−1+1>0+1
Simplify2v>1
2v>1
Divide both sides by 2
2v>1
Divide both sides by 222v​>21​
Simplifyv>21​
v>21​
Find the signs of 2​v+3​
2​v+3​=0:v=−23​​
2​v+3​=0
Move 3​to the right side
2​v+3​=0
Subtract 3​ from both sides2​v+3​−3​=0−3​
Simplify2​v=−3​
2​v=−3​
Divide both sides by 2​
2​v=−3​
Divide both sides by 2​2​2​v​=2​−3​​
Simplify
2​2​v​=2​−3​​
Simplify 2​2​v​:v
2​2​v​
Cancel the common factor: 2​=v
Simplify 2​−3​​:−23​​
2​−3​​
Apply the fraction rule: b−a​=−ba​=−2​3​​
Combine same powers : y​x​​=yx​​=−23​​
v=−23​​
v=−23​​
v=−23​​
2​v+3​<0:v<−23​​
2​v+3​<0
Move 3​to the right side
2​v+3​<0
Subtract 3​ from both sides2​v+3​−3​<0−3​
Simplify2​v<−3​
2​v<−3​
Divide both sides by 2​
2​v<−3​
Divide both sides by 2​2​2​v​<2​−3​​
Simplify
2​2​v​<2​−3​​
Simplify 2​2​v​:v
2​2​v​
Cancel the common factor: 2​=v
Simplify 2​−3​​:−23​​
2​−3​​
Apply the fraction rule: b−a​=−ba​=−2​3​​
Combine same powers : y​x​​=yx​​=−23​​
v<−23​​
v<−23​​
v<−23​​
2​v+3​>0:v>−23​​
2​v+3​>0
Move 3​to the right side
2​v+3​>0
Subtract 3​ from both sides2​v+3​−3​>0−3​
Simplify2​v>−3​
2​v>−3​
Divide both sides by 2​
2​v>−3​
Divide both sides by 2​2​2​v​>2​−3​​
Simplify
2​2​v​>2​−3​​
Simplify 2​2​v​:v
2​2​v​
Cancel the common factor: 2​=v
Simplify 2​−3​​:−23​​
2​−3​​
Apply the fraction rule: b−a​=−ba​=−2​3​​
Combine same powers : y​x​​=yx​​=−23​​
v>−23​​
v>−23​​
v>−23​​
Find the signs of 2​v−3​
2​v−3​=0:v=23​​
2​v−3​=0
Move 3​to the right side
2​v−3​=0
Add 3​ to both sides2​v−3​+3​=0+3​
Simplify2​v=3​
2​v=3​
Divide both sides by 2​
2​v=3​
Divide both sides by 2​2​2​v​=2​3​​
Simplify
2​2​v​=2​3​​
Simplify 2​2​v​:v
2​2​v​
Cancel the common factor: 2​=v
Simplify 2​3​​:23​​
2​3​​
Combine same powers : y​x​​=yx​​=23​​
v=23​​
v=23​​
v=23​​
2​v−3​<0:v<23​​
2​v−3​<0
Move 3​to the right side
2​v−3​<0
Add 3​ to both sides2​v−3​+3​<0+3​
Simplify2​v<3​
2​v<3​
Divide both sides by 2​
2​v<3​
Divide both sides by 2​2​2​v​<2​3​​
Simplify
2​2​v​<2​3​​
Simplify 2​2​v​:v
2​2​v​
Cancel the common factor: 2​=v
Simplify 2​3​​:23​​
2​3​​
Combine same powers : y​x​​=yx​​=23​​
v<23​​
v<23​​
v<23​​
2​v−3​>0:v>23​​
2​v−3​>0
Move 3​to the right side
2​v−3​>0
Add 3​ to both sides2​v−3​+3​>0+3​
Simplify2​v>3​
2​v>3​
Divide both sides by 2​
2​v>3​
Divide both sides by 2​2​2​v​>2​3​​
Simplify
2​2​v​>2​3​​
Simplify 2​2​v​:v
2​2​v​
Cancel the common factor: 2​=v
Simplify 2​3​​:23​​
2​3​​
Combine same powers : y​x​​=yx​​=23​​
v>23​​
v>23​​
v>23​​
Find the signs of v2
v2=0:v=0
v2=0
Apply rule xn=0⇒x=0
v=0
v2>0:v<0orv>0
v2>0
For un>0, if nis even then u<0oru>0
v<0orv>0
Find the signs of v+1
v+1=0:v=−1
v+1=0
Move 1to the right side
v+1=0
Subtract 1 from both sidesv+1−1=0−1
Simplifyv=−1
v=−1
v+1<0:v<−1
v+1<0
Move 1to the right side
v+1<0
Subtract 1 from both sidesv+1−1<0−1
Simplifyv<−1
v<−1
v+1>0:v>−1
v+1>0
Move 1to the right side
v+1>0
Subtract 1 from both sidesv+1−1>0−1
Simplifyv>−1
v>−1
Find the signs of v−1
v−1=0:v=1
v−1=0
Move 1to the right side
v−1=0
Add 1 to both sidesv−1+1=0+1
Simplifyv=1
v=1
v−1<0:v<1
v−1<0
Move 1to the right side
v−1<0
Add 1 to both sidesv−1+1<0+1
Simplifyv<1
v<1
v−1>0:v>1
v−1>0
Move 1to the right side
v−1>0
Add 1 to both sidesv−1+1>0+1
Simplifyv>1
v>1
Find singularity points
Find the zeros of the denominator v2(v+1)(v−1):v=0,v=−1,v=1
v2(v+1)(v−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0v=0orv+1=0orv−1=0
Solve v+1=0:v=−1
v+1=0
Move 1to the right side
v+1=0
Subtract 1 from both sidesv+1−1=0−1
Simplifyv=−1
v=−1
Solve v−1=0:v=1
v−1=0
Move 1to the right side
v−1=0
Add 1 to both sidesv−1+1=0+1
Simplifyv=1
v=1
The solutions arev=0,v=−1,v=1
Summarize in a table:2v+12v−12​v+3​2​v−3​v2v+1v−1v2(v+1)(v−1)(2v+1)(2v−1)(2​v+3​)(2​v−3​)​​v<−23​​−−−−+−−+​v=−23​​−−0−+−−0​−23​​<v<−1−−+−+−−−​v=−1−−+−+0−Undefined​−1<v<−21​−−+−++−+​v=−21​0−+−++−0​−21​<v<0+−+−++−−​v=0+−+−0+−Undefined​0<v<21​+−+−++−−​v=21​+0+−++−0​21​<v<1+++−++−+​v=1+++−++0Undefined​1<v<23​​+++−+++−​v=23​​+++0+++0​v>23​​++++++++​​
Identify the intervals that satisfy the required condition: ≤0v=−23​​or−23​​<v<−1orv=−21​or−21​<v<0or0<v<21​orv=21​or1<v<23​​orv=23​​
Merge Overlapping Intervals
−23​​≤v<−1or−21​≤v<0or0<v≤21​or1<v<23​​orv=23​​
The union of two intervals is the set of numbers which are in either interval
v=−23​​or−23​​<v<−1
−23​​≤v<−1
The union of two intervals is the set of numbers which are in either interval
−23​​≤v<−1orv=−21​
−23​​≤v<−1orv=−21​
The union of two intervals is the set of numbers which are in either interval
−23​​≤v<−1orv=−21​or−21​<v<0
−23​​≤v<−1or−21​≤v<0
The union of two intervals is the set of numbers which are in either interval
−23​​≤v<−1or−21​≤v<0or0<v<21​
−23​​≤v<−1or−21​≤v<0or0<v<21​
The union of two intervals is the set of numbers which are in either interval
−23​​≤v<−1or−21​≤v<0or0<v<21​orv=21​
−23​​≤v<−1or−21​≤v<0or0<v≤21​
The union of two intervals is the set of numbers which are in either interval
−23​​≤v<−1or−21​≤v<0or0<v≤21​or1<v<23​​
−23​​≤v<−1or−21​≤v<0or0<v≤21​or1<v<23​​
The union of two intervals is the set of numbers which are in either interval
−23​​≤v<−1or−21​≤v<0or0<v≤21​or1<v<23​​orv=23​​
−23​​≤v<−1or−21​≤v<0or0<v≤21​or1<v≤23​​
−23​​≤v<−1or−21​≤v<0or0<v≤21​or1<v≤23​​
−23​​≤v<−1or−21​≤v<0or0<v≤21​or1<v≤23​​
−23​​≤v<−1or−21​≤v<0or0<v≤21​or1<v≤23​​
Substitute back v=sin(x)−23​​≤sin(x)<−1or−21​≤sin(x)<0or0<sin(x)≤21​or1<sin(x)≤23​​
−23​​≤sin(x)<−1:False for all x∈R
−23​​≤sin(x)<−1
If a≤u<bthen a≤uandu<b−23​​≤sin(x)andsin(x)<−1
−23​​≤sin(x):True for all x∈R
−23​​≤sin(x)
Switch sidessin(x)≥−23​​
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)≥−23​​and−1≤sin(x)≤1:−1≤sin(x)≤1
Let y=sin(x)
Combine the intervalsy≥−23​​and−1≤y≤1
Merge Overlapping Intervals
y≥−23​​and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≥−23​​and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
sin(x)<−1:False for all x∈R
sin(x)<−1
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)<−1and−1≤sin(x)≤1:False
Let y=sin(x)
Combine the intervalsy<−1and−1≤y≤1
Merge Overlapping Intervals
y<−1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y<−1and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
Combine the intervalsTrueforallx∈RandFalseforallx∈R
Merge Overlapping Intervals
Trueforallx∈RandFalseforallx∈R
The intersection of two intervals is the set of numbers which are in both intervals
True for all x∈RandFalse for all x∈R
Falseforallx∈R
Falseforallx∈R
−21​≤sin(x)<0:π+2πn<x≤67π​+2πnor611π​+2πn≤x<2π+2πn
−21​≤sin(x)<0
If a≤u<bthen a≤uandu<b−21​≤sin(x)andsin(x)<0
−21​≤sin(x):−6π​+2πn≤x≤67π​+2πn
−21​≤sin(x)
Switch sidessin(x)≥−21​
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(−21​)+2πn≤x≤π−arcsin(−21​)+2πn
Simplify arcsin(−21​):−6π​
arcsin(−21​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−21​)=−arcsin(21​)=−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=−6π​
Simplify π−arcsin(−21​):67π​
π−arcsin(−21​)
arcsin(−21​)=−6π​
arcsin(−21​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−21​)=−arcsin(21​)=−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=−6π​
=π−(−6π​)
Simplify
π−(−6π​)
Apply rule −(−a)=a=π+6π​
Convert element to fraction: π=6π6​=6π6​+6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π6+π​
Add similar elements: 6π+π=7π=67π​
=67π​
−6π​+2πn≤x≤67π​+2πn
sin(x)<0:−π+2πn<x<2πn
sin(x)<0
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(0)+2πn<x<arcsin(0)+2πn
Simplify −π−arcsin(0):−π
−π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−0
−π−0=−π=−π
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
−π+2πn<x<0+2πn
Simplify−π+2πn<x<2πn
Combine the intervals−6π​+2πn≤x≤67π​+2πnand−π+2πn<x<2πn
Merge Overlapping Intervalsπ+2πn<x≤67π​+2πnor611π​+2πn≤x<2π+2πn
0<sin(x)≤21​:2πn<x≤6π​+2πnor65π​+2πn≤x<π+2πn
0<sin(x)≤21​
If a<u≤bthen a<uandu≤b0<sin(x)andsin(x)≤21​
0<sin(x):2πn<x<π+2πn
0<sin(x)
Switch sidessin(x)>0
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(0)+2πn<x<π−arcsin(0)+2πn
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
Simplify π−arcsin(0):π
π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−0
π−0=π=π
0+2πn<x<π+2πn
Simplify2πn<x<π+2πn
sin(x)≤21​:−67π​+2πn≤x≤6π​+2πn
sin(x)≤21​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(21​)+2πn≤x≤arcsin(21​)+2πn
Simplify −π−arcsin(21​):−67π​
−π−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−6π​
Simplify
−π−6π​
Convert element to fraction: π=6π6​=−6π6​−6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6−π6−π​
Add similar elements: −6π−π=−7π=6−7π​
Apply the fraction rule: b−a​=−ba​=−67π​
=−67π​
Simplify arcsin(21​):6π​
arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=6π​
−67π​+2πn≤x≤6π​+2πn
Combine the intervals2πn<x<π+2πnand−67π​+2πn≤x≤6π​+2πn
Merge Overlapping Intervals2πn<x≤6π​+2πnor65π​+2πn≤x<π+2πn
1<sin(x)≤23​​:False for all x∈R
1<sin(x)≤23​​
If a<u≤bthen a<uandu≤b1<sin(x)andsin(x)≤23​​
1<sin(x):False for all x∈R
1<sin(x)
Switch sidessin(x)>1
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)>1and−1≤sin(x)≤1:False
Let y=sin(x)
Combine the intervalsy>1and−1≤y≤1
Merge Overlapping Intervals
y>1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y>1and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
sin(x)≤23​​:True for all x∈R
sin(x)≤23​​
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)≤23​​and−1≤sin(x)≤1:−1≤sin(x)≤1
Let y=sin(x)
Combine the intervalsy≤23​​and−1≤y≤1
Merge Overlapping Intervals
y≤23​​and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≤23​​and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
Combine the intervalsFalseforallx∈RandTrueforallx∈R
Merge Overlapping Intervals
Falseforallx∈RandTrueforallx∈R
The intersection of two intervals is the set of numbers which are in both intervals
False for all x∈RandTrue for all x∈R
Falseforallx∈R
Falseforallx∈R
Combine the intervalsFalseforallx∈Ror(π+2πn<x≤67π​+2πnor611π​+2πn≤x<2π+2πn)or(2πn<x≤6π​+2πnor65π​+2πn≤x<π+2πn)orFalseforallx∈R
Merge Overlapping Intervals2πn<x≤6π​+2πnor65π​+2πn≤x<π+2πnorπ+2πn<x≤67π​+2πnor611π​+2πn≤x<2π+2πn

Popular Examples

cos(x)>= sin(x)sin(x)<1tan(x)<0.7sin(2x)>0sin(x)>= 1/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024