Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1250>600cos((2pi)/3 (t-1))+1000

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1250>600cos(32π​(t−1))+1000

Solution

2π3arccos(125​)+2π​+3n<t<2π8π−3arccos(125​)​+3n
+2
Interval Notation
(2π3arccos(125​)+2π​+3n,2π8π−3arccos(125​)​+3n)
Decimal
1.54479…+3n<t<3.45520…+3n
Solution steps
1250>600cos(32π​(t−1))+1000
Switch sides600cos(32π​(t−1))+1000<1250
Move 1000to the right side
600cos(32π​(t−1))+1000<1250
Subtract 1000 from both sides600cos(32π​(t−1))+1000−1000<1250−1000
Simplify600cos(32π​(t−1))<250
600cos(32π​(t−1))<250
Divide both sides by 600
600cos(32π​(t−1))<250
Divide both sides by 600600600cos(32π​(t−1))​<600250​
Simplifycos(32π​(t−1))<125​
cos(32π​(t−1))<125​
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(125​)+2πn<32π​(t−1)<2π−arccos(125​)+2πn
If a<u<bthen a<uandu<barccos(125​)+2πn<32π​(t−1)and32π​(t−1)<2π−arccos(125​)+2πn
arccos(125​)+2πn<32π​(t−1):t>2π3arccos(125​)+2π​+3n
arccos(125​)+2πn<32π​(t−1)
Switch sides32π​(t−1)>arccos(125​)+2πn
Multiply both sides by 3
32π​(t−1)>arccos(125​)+2πn
Multiply both sides by 33⋅32π​(t−1)>3arccos(125​)+3⋅2πn
Simplify
3⋅32π​(t−1)>3arccos(125​)+3⋅2πn
Simplify 3⋅32π​(t−1):2π(t−1)
3⋅32π​(t−1)
Multiply fractions: a⋅cb​=ca⋅b​=32⋅3π​(t−1)
Cancel the common factor: 3=(t−1)⋅2π
Simplify 3arccos(125​)+3⋅2πn:3arccos(125​)+6πn
3arccos(125​)+3⋅2πn
Multiply the numbers: 3⋅2=6=3arccos(125​)+6πn
2π(t−1)>3arccos(125​)+6πn
2π(t−1)>3arccos(125​)+6πn
2π(t−1)>3arccos(125​)+6πn
Divide both sides by 2π
2π(t−1)>3arccos(125​)+6πn
Divide both sides by 2π2π2π(t−1)​>2π3arccos(125​)​+2π6πn​
Simplify
2π2π(t−1)​>2π3arccos(125​)​+2π6πn​
Simplify 2π2π(t−1)​:t−1
2π2π(t−1)​
Divide the numbers: 22​=1=ππ(t−1)​
Cancel the common factor: π=t−1
Simplify 2π3arccos(125​)​+2π6πn​:2π3arccos(125​)​+3n
2π3arccos(125​)​+2π6πn​
Cancel 2π6πn​:3n
2π6πn​
Cancel 2π6πn​:3n
2π6πn​
Divide the numbers: 26​=3=π3πn​
Cancel the common factor: π=3n
=3n
=2π3arccos(125​)​+3n
t−1>2π3arccos(125​)​+3n
t−1>2π3arccos(125​)​+3n
t−1>2π3arccos(125​)​+3n
Move 1to the right side
t−1>2π3arccos(125​)​+3n
Add 1 to both sidest−1+1>2π3arccos(125​)​+3n+1
Simplifyt>2π3arccos(125​)​+3n+1
t>2π3arccos(125​)​+3n+1
Simplify 2π3arccos(125​)​+1:2π3arccos(125​)+2π​
2π3arccos(125​)​+1
Convert element to fraction: 1=2π1⋅2π​=2π3arccos(125​)​+2π1⋅2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π3arccos(125​)+1⋅2π​
Multiply the numbers: 1⋅2=2=2π3arccos(125​)+2π​
t>2π3arccos(125​)+2π​+3n
32π​(t−1)<2π−arccos(125​)+2πn:t<2π8π−3arccos(125​)​+3n
32π​(t−1)<2π−arccos(125​)+2πn
Multiply both sides by 3
32π​(t−1)<2π−arccos(125​)+2πn
Multiply both sides by 33⋅32π​(t−1)<3⋅2π−3arccos(125​)+3⋅2πn
Simplify
3⋅32π​(t−1)<3⋅2π−3arccos(125​)+3⋅2πn
Simplify 3⋅32π​(t−1):2π(t−1)
3⋅32π​(t−1)
Multiply fractions: a⋅cb​=ca⋅b​=32⋅3π​(t−1)
Cancel the common factor: 3=(t−1)⋅2π
Simplify 3⋅2π−3arccos(125​)+3⋅2πn:6π−3arccos(125​)+6πn
3⋅2π−3arccos(125​)+3⋅2πn
Multiply the numbers: 3⋅2=6=6π−3arccos(125​)+6πn
2π(t−1)<6π−3arccos(125​)+6πn
2π(t−1)<6π−3arccos(125​)+6πn
2π(t−1)<6π−3arccos(125​)+6πn
Divide both sides by 2π
2π(t−1)<6π−3arccos(125​)+6πn
Divide both sides by 2π2π2π(t−1)​<2π6π​−2π3arccos(125​)​+2π6πn​
Simplify
2π2π(t−1)​<2π6π​−2π3arccos(125​)​+2π6πn​
Simplify 2π2π(t−1)​:t−1
2π2π(t−1)​
Divide the numbers: 22​=1=ππ(t−1)​
Cancel the common factor: π=t−1
Simplify 2π6π​−2π3arccos(125​)​+2π6πn​:3−2π3arccos(125​)​+3n
2π6π​−2π3arccos(125​)​+2π6πn​
Cancel 2π6π​:3
2π6π​
Cancel 2π6π​:3
2π6π​
Divide the numbers: 26​=3=π3π​
Cancel the common factor: π=3
=3
=3−2π3arccos(125​)​+2π6πn​
Cancel 2π6πn​:3n
2π6πn​
Cancel 2π6πn​:3n
2π6πn​
Divide the numbers: 26​=3=π3πn​
Cancel the common factor: π=3n
=3n
=3−2π3arccos(125​)​+3n
t−1<3−2π3arccos(125​)​+3n
t−1<3−2π3arccos(125​)​+3n
t−1<3−2π3arccos(125​)​+3n
Move 1to the right side
t−1<3−2π3arccos(125​)​+3n
Add 1 to both sidest−1+1<3−2π3arccos(125​)​+3n+1
Simplify
t−1+1<3−2π3arccos(125​)​+3n+1
Simplify t−1+1:t
t−1+1
Add similar elements: −1+1<0
=t
Simplify 3−2π3arccos(125​)​+3n+1:3n+4−2π3arccos(125​)​
3−2π3arccos(125​)​+3n+1
Add the numbers: 3+1=4=3n+4−2π3arccos(125​)​
t<3n+4−2π3arccos(125​)​
t<3n+4−2π3arccos(125​)​
t<3n+4−2π3arccos(125​)​
Simplify 4−2π3arccos(125​)​:2π8π−3arccos(125​)​
4−2π3arccos(125​)​
Convert element to fraction: 4=2π4⋅2π​=2π4⋅2π​−2π3arccos(125​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π4⋅2π−3arccos(125​)​
Multiply the numbers: 4⋅2=8=2π8π−3arccos(125​)​
t<2π8π−3arccos(125​)​+3n
Combine the intervalst>2π3arccos(125​)+2π​+3nandt<2π8π−3arccos(125​)​+3n
Merge Overlapping Intervals2π3arccos(125​)+2π​+3n<t<2π8π−3arccos(125​)​+3n

Popular Examples

tan(a)>1tan(x)>= sin(2x)sqrt(3)tan(x)>1cos((pix)/2)> 1/22sin^2(x)-7sin(x)+3>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024