Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(5x-30)<= (sqrt(3))/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(5x−30∘)≤23​​

Solution

15−4π+15⋅6∘​+52π​n≤x≤15π+15⋅6∘​+52π​n
+2
Interval Notation
[15−4π+15⋅6∘​+52π​n,15π+15⋅6∘​+52π​n]
Decimal
−0.73303…+52π​n≤x≤0.31415…+52π​n
Solution steps
sin(5x−30∘)≤23​​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(23​​)+2πn≤(5x−30∘)≤arcsin(23​​)+2πn
If a≤u≤bthen a≤uandu≤b−π−arcsin(23​​)+2πn≤5x−30∘and5x−30∘≤arcsin(23​​)+2πn
−π−arcsin(23​​)+2πn≤5x−30∘:x≥15−4π+15⋅6∘​+52π​n
−π−arcsin(23​​)+2πn≤5x−30∘
Switch sides5x−30∘≥−π−arcsin(23​​)+2πn
Simplify −π−arcsin(23​​)+2πn:−π−3π​+2πn
−π−arcsin(23​​)+2πn
Use the following trivial identity:arcsin(23​​)=3π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−3π​+2πn
5x−30∘≥−π−3π​+2πn
Move 30∘to the right side
5x−30∘≥−π−3π​+2πn
Add 30∘ to both sides5x−30∘+30∘≥−π−3π​+2πn+30∘
Simplify5x≥−π−3π​+2πn+30∘
5x≥−π−3π​+2πn+30∘
Divide both sides by 5
5x≥−π−3π​+2πn+30∘
Divide both sides by 555x​≥−5π​−53π​​+52πn​+530∘​
Simplify
55x​≥−5π​−53π​​+52πn​+530∘​
Simplify 55x​:x
55x​
Divide the numbers: 55​=1=x
Simplify −5π​−53π​​+52πn​+530∘​:−5π​−15π​+52πn​+6∘
−5π​−53π​​+52πn​+530∘​
Group like terms=−5π​+52πn​−53π​​+530∘​
53π​​=15π​
53π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅5π​
Multiply the numbers: 3⋅5=15=15π​
530∘​=6∘
530∘​
Factor 30∘:2∘⋅3∘⋅5∘
Factor 30=2⋅3⋅5=(2⋅3⋅5)∘
Apply exponent rule: (ab)c=acbc=2∘⋅3∘⋅5∘
=52∘⋅3∘⋅5∘​
Cancel the common factor: 5∘=2∘⋅3∘
Apply exponent rule: ambm=(ab)m2∘⋅3∘=(2⋅3)∘=(2⋅3)∘
Multiply the numbers: 2⋅3=6=6∘
=−5π​+52πn​−15π​+6∘
Group like terms=−5π​−15π​+52πn​+6∘
x≥−5π​−15π​+52πn​+6∘
x≥−5π​−15π​+52πn​+6∘
Simplify −5π​−15π​+6∘:15−4π+15⋅6∘​
−5π​−15π​+6∘
Convert element to fraction: 6∘=16∘​=−5π​−15π​+16∘​
Least Common Multiplier of 5,15,1:15
5,15,1
Least Common Multiplier (LCM)
Prime factorization of 5:5
5
5 is a prime number, therefore no factorization is possible=5
Prime factorization of 15:3⋅5
15
15divides by 315=5⋅3=3⋅5
3,5 are all prime numbers, therefore no further factorization is possible=3⋅5
Prime factorization of 1
Compute a number comprised of factors that appear in at least one of the following:
5,15,1
=5⋅3
Multiply the numbers: 5⋅3=15=15
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 15
For 5π​:multiply the denominator and numerator by 35π​=5⋅3π3​=15π3​
For 16∘​:multiply the denominator and numerator by 1516∘​=1⋅156∘⋅15​=156∘⋅15​
=−15π3​−15π​+156∘⋅15​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=15−π3−π+6∘⋅15​
Add similar elements: −3π−π=−4π=15−4π+15⋅6∘​
x≥15−4π+15⋅6∘​+52π​n
x≥15−4π+15⋅6∘​+52π​n
5x−30∘≤arcsin(23​​)+2πn:x≤15π+15⋅6∘​+52π​n
5x−30∘≤arcsin(23​​)+2πn
Simplify arcsin(23​​)+2πn:3π​+2πn
arcsin(23​​)+2πn
Use the following trivial identity:arcsin(23​​)=3π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=3π​+2πn
5x−30∘≤3π​+2πn
Move 30∘to the right side
5x−30∘≤3π​+2πn
Add 30∘ to both sides5x−30∘+30∘≤3π​+2πn+30∘
Simplify5x≤3π​+2πn+30∘
5x≤3π​+2πn+30∘
Divide both sides by 5
5x≤3π​+2πn+30∘
Divide both sides by 555x​≤53π​​+52πn​+530∘​
Simplify
55x​≤53π​​+52πn​+530∘​
Simplify 55x​:x
55x​
Divide the numbers: 55​=1=x
Simplify 53π​​+52πn​+530∘​:52πn​+15π​+6∘
53π​​+52πn​+530∘​
Group like terms=52πn​+53π​​+530∘​
53π​​=15π​
53π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅5π​
Multiply the numbers: 3⋅5=15=15π​
530∘​=6∘
530∘​
Factor 30∘:2∘⋅3∘⋅5∘
Factor 30=2⋅3⋅5=(2⋅3⋅5)∘
Apply exponent rule: (ab)c=acbc=2∘⋅3∘⋅5∘
=52∘⋅3∘⋅5∘​
Cancel the common factor: 5∘=2∘⋅3∘
Apply exponent rule: ambm=(ab)m2∘⋅3∘=(2⋅3)∘=(2⋅3)∘
Multiply the numbers: 2⋅3=6=6∘
=52πn​+15π​+6∘
x≤52πn​+15π​+6∘
x≤52πn​+15π​+6∘
Simplify 15π​+6∘:15π+15⋅6∘​
15π​+6∘
Convert element to fraction: 6∘=156∘⋅15​=15π​+156∘⋅15​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=15π+6∘⋅15​
x≤15π+15⋅6∘​+52π​n
x≤15π+15⋅6∘​+52π​n
Combine the intervalsx≥15−4π+15⋅6∘​+52π​nandx≤15π+15⋅6∘​+52π​n
Merge Overlapping Intervals15−4π+15⋅6∘​+52π​n≤x≤15π+15⋅6∘​+52π​n

Popular Examples

sec(x)<0,csc(x)>0,0<= x<= 2pi2(cos(3x))^2+sqrt(3)sin(6x)<12cos^2(x)-cos(x)-1<0sin(x/2)>0solvefor x,tan(x)<= 1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024