Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(1+2sin(x))/((cos(2x)))>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(cos(2x))1+2sin(x)​>0

Solution

2πn≤x<4π​+2πnor43π​+2πn<x<67π​+2πnor45π​+2πn<x<47π​+2πnor611π​+2πn<x≤2π+2πn
+2
Interval Notation
[2πn,4π​+2πn)∪(43π​+2πn,67π​+2πn)∪(45π​+2πn,47π​+2πn)∪(611π​+2πn,2π+2πn]
Decimal
2πn≤x<0.78539…+2πnor2.35619…+2πn<x<3.66519…+2πnor3.92699…+2πn<x<5.49778…+2πnor5.75958…+2πn<x≤6.28318…+2πn
Solution steps
cos(2x)1+2sin(x)​>0
Use the following identity: cos(2x)=cos2(x)−sin2(x)cos2(x)−sin2(x)1+2sin(x)​>0
Periodicity of cos2(x)−sin2(x)1+2sin(x)​:2π
cos2(x)−sin2(x)1+2sin(x)​is composed of the following functions and periods:sin(x)with periodicity of 2π
The compound periodicity is:=2π
Find the zeroes and undifined points of cos2(x)−sin2(x)1+2sin(x)​for 0≤x<2π
To find the zeroes, set the inequality to zerocos2(x)−sin2(x)1+2sin(x)​=0
cos2(x)−sin2(x)1+2sin(x)​=0,0≤x<2π:x=67π​,x=611π​
cos2(x)−sin2(x)1+2sin(x)​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=01+2sin(x)=0
Move 1to the right side
1+2sin(x)=0
Subtract 1 from both sides1+2sin(x)−1=0−1
Simplify2sin(x)=−1
2sin(x)=−1
Divide both sides by 2
2sin(x)=−1
Divide both sides by 222sin(x)​=2−1​
Simplifysin(x)=−21​
sin(x)=−21​
General solutions for sin(x)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
Solutions for the range 0≤x<2πx=67π​,x=611π​
Find the undefined points:x=4π​,x=43π​,x=45π​,x=47π​
Find the zeros of the denominatorcos2(x)−sin2(x)=0
Rewrite using trig identities
cos2(x)−sin2(x)
Use the Double Angle identity: cos2(x)−sin2(x)=cos(2x)=cos(2x)
cos(2x)=0
General solutions for cos(2x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2x=2π​+2πn,2x=23π​+2πn
2x=2π​+2πn,2x=23π​+2πn
Solve 2x=2π​+2πn:x=4π​+πn
2x=2π​+2πn
Divide both sides by 2
2x=2π​+2πn
Divide both sides by 222x​=22π​​+22πn​
Simplify
22x​=22π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22π​​+22πn​:4π​+πn
22π​​+22πn​
22π​​=4π​
22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=4π​+πn
x=4π​+πn
x=4π​+πn
x=4π​+πn
Solve 2x=23π​+2πn:x=43π​+πn
2x=23π​+2πn
Divide both sides by 2
2x=23π​+2πn
Divide both sides by 222x​=223π​​+22πn​
Simplify
22x​=223π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 223π​​+22πn​:43π​+πn
223π​​+22πn​
223π​​=43π​
223π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅23π​
Multiply the numbers: 2⋅2=4=43π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=43π​+πn
x=43π​+πn
x=43π​+πn
x=43π​+πn
x=4π​+πn,x=43π​+πn
Solutions for the range 0≤x<2πx=4π​,x=43π​,x=45π​,x=47π​
4π​,43π​,67π​,45π​,47π​,611π​
Identify the intervals0<x<4π​,4π​<x<43π​,43π​<x<67π​,67π​<x<45π​,45π​<x<47π​,47π​<x<611π​,611π​<x<2π
Summarize in a table:1+2sin(x)cos2(x)−sin2(x)cos2(x)−sin2(x)1+2sin(x)​​x=0+++​0<x<4π​+++​x=4π​+0Undefined​4π​<x<43π​+−−​x=43π​+0Undefined​43π​<x<67π​+++​x=67π​0+0​67π​<x<45π​−+−​x=45π​−0Undefined​45π​<x<47π​−−+​x=47π​−0Undefined​47π​<x<611π​−+−​x=611π​0+0​611π​<x<2π+++​x=2π+++​​
Identify the intervals that satisfy the required condition: >0x=0or0<x<4π​or43π​<x<67π​or45π​<x<47π​or611π​<x<2πorx=2π
Merge Overlapping Intervals
0≤x<4π​or43π​<x<67π​or45π​<x<47π​or611π​<x<2πorx=2π
The union of two intervals is the set of numbers which are in either interval
x=0or0<x<4π​
0≤x<4π​
The union of two intervals is the set of numbers which are in either interval
0≤x<4π​or43π​<x<67π​
0≤x<4π​or43π​<x<67π​
The union of two intervals is the set of numbers which are in either interval
0≤x<4π​or43π​<x<67π​or45π​<x<47π​
0≤x<4π​or43π​<x<67π​or45π​<x<47π​
The union of two intervals is the set of numbers which are in either interval
0≤x<4π​or43π​<x<67π​or45π​<x<47π​or611π​<x<2π
0≤x<4π​or43π​<x<67π​or45π​<x<47π​or611π​<x<2π
The union of two intervals is the set of numbers which are in either interval
0≤x<4π​or43π​<x<67π​or45π​<x<47π​or611π​<x<2πorx=2π
0≤x<4π​or43π​<x<67π​or45π​<x<47π​or611π​<x≤2π
0≤x<4π​or43π​<x<67π​or45π​<x<47π​or611π​<x≤2π
Apply the periodicity of cos2(x)−sin2(x)1+2sin(x)​2πn≤x<4π​+2πnor43π​+2πn<x<67π​+2πnor45π​+2πn<x<47π​+2πnor611π​+2πn<x≤2π+2πn

Popular Examples

(cos^2(x)-1/2)/(tan(x)-sqrt(3))<0tan(θ)>0,cot(θ)>06sin(θ)>= 0tan(x)>\sqrt[4]{5},-pi<= x<= pi2sin^2(x)+3sin(x)>= 2,0<= x<= 2pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024