Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(cos^2(x)-1/2)/(tan(x)-sqrt(3))<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)−3​cos2(x)−21​​<0

Solution

πn≤x<4π​+πnor3π​+πn<x<2π​+πnor43π​+πn<x≤π+πn
+2
Interval Notation
[πn,4π​+πn)∪(3π​+πn,2π​+πn)∪(43π​+πn,π+πn]
Decimal
πn≤x<0.78539…+πnor1.04719…+πn<x<1.57079…+πnor2.35619…+πn<x≤3.14159…+πn
Solution steps
tan(x)−3​cos2(x)−21​​<0
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)tan(x)−3​1−sin2(x)−21​​<0
Simplify tan(x)−3​1−sin2(x)−21​​:−tan(x)−3​(sin(x)+21​​)(sin(x)−21​​)​
tan(x)−3​1−sin2(x)−21​​
Multiply by the conjugate tan(x)+3​tan(x)+3​​=(tan(x)−3​)(tan(x)+3​)(1−sin2(x)−21​)(tan(x)+3​)​
Simplify (1−sin2(x)−21​)(tan(x)+3​):(−sin2(x)+21​)(tan(x)+3​)
(1−sin2(x)−21​)(tan(x)+3​)
Join 1−sin2(x)−21​:−sin2(x)+21​
1−sin2(x)−21​
Combine the fractions 1−21​:21​
1−21​
Convert element to fraction: 1=21⋅2​=21⋅2​−21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=21⋅2−1​
1⋅2−1=1
1⋅2−1
Multiply the numbers: 1⋅2=2=2−1
Subtract the numbers: 2−1=1=1
=21​
=−sin2(x)
=(−sin2(x)+21​)(tan(x)+3​)
(tan(x)−3​)(tan(x)+3​)=tan2(x)−3
(tan(x)−3​)(tan(x)+3​)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=tan(x),b=3​=tan2(x)−(3​)2
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=tan2(x)−3
=tan2(x)−3(−sin2(x)+21​)(tan(x)+3​)​
Factor −sin2(x)+21​:−(sin(x)+21​​)(sin(x)−21​​)
−sin2(x)+21​
Factor out common term −1=−(sin2(x)−21​)
Factor sin2(x)−21​:(sin(x)+21​​)(sin(x)−21​​)
sin2(x)−21​
Apply radical rule: a=(a​)221​=(21​​)2=sin2(x)−(21​​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(x)−(21​​)2=(sin(x)+21​​)(sin(x)−21​​)=(sin(x)+21​​)(sin(x)−21​​)
=−(sin(x)+21​​)(sin(x)−21​​)
=−tan2(x)−3(sin(x)+21​​)(sin(x)−21​​)(tan(x)+3​)​
Factor tan2(x)−3:(tan(x)+3​)(tan(x)−3​)
tan2(x)−3
Apply radical rule: a=(a​)23=(3​)2=tan2(x)−(3​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)tan2(x)−(3​)2=(tan(x)+3​)(tan(x)−3​)=(tan(x)+3​)(tan(x)−3​)
=−(tan(x)+3​)(tan(x)−3​)(sin(x)+21​​)(sin(x)−21​​)(tan(x)+3​)​
Cancel the common factor: tan(x)+3​=−tan(x)−3​(sin(x)+21​​)(sin(x)−21​​)​
−tan(x)−3​(sin(x)+21​​)(sin(x)−21​​)​<0
Periodicity of −tan(x)−3​(sin(x)+21​​)(sin(x)−21​​)​:π
tan(x)−3​(sin(x)+21​​)(sin(x)−21​​)​is composed of the following functions and periods:sin(x)with periodicity of 2π
The compound periodicity is:=π
Express with sin, cos
−tan(x)−3​(sin(x)+21​​)(sin(x)−21​​)​<0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​−cos(x)sin(x)​−3​(sin(x)+21​​)(sin(x)−21​​)​<0
−cos(x)sin(x)​−3​(sin(x)+21​​)(sin(x)−21​​)​<0
Simplify −cos(x)sin(x)​−3​(sin(x)+21​​)(sin(x)−21​​)​:−sin(x)−3​cos(x)cos(x)(sin(x)+21​​)(sin(x)−21​​)​
−cos(x)sin(x)​−3​(sin(x)+21​​)(sin(x)−21​​)​
Join cos(x)sin(x)​−3​:cos(x)sin(x)−3​cos(x)​
cos(x)sin(x)​−3​
Convert element to fraction: 3​=cos(x)3​cos(x)​=cos(x)sin(x)​−cos(x)3​cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)−3​cos(x)​
=−cos(x)sin(x)−3​cos(x)​(sin(x)+21​​)(sin(x)−21​​)​
Apply the fraction rule: cb​a​=ba⋅c​=−sin(x)−3​cos(x)cos(x)(sin(x)+21​​)(sin(x)−21​​)​
−sin(x)−3​cos(x)cos(x)(sin(x)+21​​)(sin(x)−21​​)​<0
Find the zeroes and undifined points of −sin(x)−3​cos(x)cos(x)(sin(x)+21​​)(sin(x)−21​​)​for 0≤x<π
To find the zeroes, set the inequality to zero−sin(x)−3​cos(x)cos(x)(sin(x)+21​​)(sin(x)−21​​)​=0
−sin(x)−3​cos(x)cos(x)(sin(x)+21​​)(sin(x)−21​​)​=0,0≤x<π:x=2π​,x=4π​,x=43π​
−sin(x)−3​cos(x)cos(x)(sin(x)+21​​)(sin(x)−21​​)​=0,0≤x<π
g(x)f(x)​=0⇒f(x)=0−(cos(x)(sin(x)+21​​)(sin(x)−21​​))=0
Solving each part separatelycos(x)=0orsin(x)+21​​=0orsin(x)−21​​=0
cos(x)=0,0≤x<π:x=2π​
cos(x)=0,0≤x<π
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<πx=2π​
sin(x)+21​​=0,0≤x<π:No Solution
sin(x)+21​​=0,0≤x<π
Move 21​​to the right side
sin(x)+21​​=0
Subtract 21​​ from both sidessin(x)+21​​−21​​=0−21​​
Simplifysin(x)=−21​​
sin(x)=−21​​
Apply trig inverse properties
sin(x)=−21​​
General solutions for sin(x)=−21​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−21​​)+2πn,x=π+arcsin(21​​)+2πn
x=arcsin(−21​​)+2πn,x=π+arcsin(21​​)+2πn
Solutions for the range 0≤x<πNoSolution
sin(x)−21​​=0,0≤x<π:x=4π​,x=43π​
sin(x)−21​​=0,0≤x<π
Move 21​​to the right side
sin(x)−21​​=0
Add 21​​ to both sidessin(x)−21​​+21​​=0+21​​
Simplifysin(x)=21​​
sin(x)=21​​
Apply trig inverse properties
sin(x)=21​​
General solutions for sin(x)=21​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(21​​)+2πn,x=π−arcsin(21​​)+2πn
x=arcsin(21​​)+2πn,x=π−arcsin(21​​)+2πn
Solutions for the range 0≤x<πx=4π​,x=43π​
Combine all the solutionsx=2π​,x=4π​,x=43π​
Find the undefined points:x=3π​
Find the zeros of the denominatorsin(x)−3​cos(x)=0
Rewrite using trig identities
sin(x)−3​cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)−3​cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​−3​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)−3​=0
tan(x)−3​=0
Move 3​to the right side
tan(x)−3​=0
Add 3​ to both sidestan(x)−3​+3​=0+3​
Simplifytan(x)=3​
tan(x)=3​
General solutions for tan(x)=3​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=3π​+πn
x=3π​+πn
Solutions for the range 0≤x<πx=3π​
4π​,3π​,2π​,43π​
Identify the intervals0<x<4π​,4π​<x<3π​,3π​<x<2π​,2π​<x<43π​,43π​<x<π
Summarize in a table:cos(x)sin(x)+21​​sin(x)−21​​sin(x)−3​cos(x)−sin(x)−3​cos(x)cos(x)(sin(x)+21​​)(sin(x)−21​​)​​x=0++−−−​0<x<4π​++−−−​x=4π​++0−0​4π​<x<3π​+++−+​x=3π​+++0Undefined​3π​<x<2π​++++−​x=2π​0+++0​2π​<x<43π​−++++​x=43π​−+0+0​43π​<x<π−+−+−​x=π−+−+−​​
Identify the intervals that satisfy the required condition: <0x=0or0<x<4π​or3π​<x<2π​or43π​<x<πorx=π
Merge Overlapping Intervals
0≤x<4π​or3π​<x<2π​or43π​<x<πorx=π
The union of two intervals is the set of numbers which are in either interval
x=0or0<x<4π​
0≤x<4π​
The union of two intervals is the set of numbers which are in either interval
0≤x<4π​or3π​<x<2π​
0≤x<4π​or3π​<x<2π​
The union of two intervals is the set of numbers which are in either interval
0≤x<4π​or3π​<x<2π​or43π​<x<π
0≤x<4π​or3π​<x<2π​or43π​<x<π
The union of two intervals is the set of numbers which are in either interval
0≤x<4π​or3π​<x<2π​or43π​<x<πorx=π
0≤x<4π​or3π​<x<2π​or43π​<x≤π
0≤x<4π​or3π​<x<2π​or43π​<x≤π
Apply the periodicity of −tan(x)−3​(sin(x)+21​​)(sin(x)−21​​)​πn≤x<4π​+πnor3π​+πn<x<2π​+πnor43π​+πn<x≤π+πn

Popular Examples

tan(θ)>0,cot(θ)>06sin(θ)>= 0tan(x)>\sqrt[4]{5},-pi<= x<= pi2sin^2(x)+3sin(x)>= 2,0<= x<= 2pisin(x)+cos(x)>1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024