Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)-sin(x)+1>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)−sin(x)+1≥0

Solution

−π+2πn≤x≤2π​+2πn
+2
Interval Notation
[−π+2πn,2π​+2πn]
Decimal
−3.14159…+2πn≤x≤1.57079…+2πn
Solution steps
cos(x)−sin(x)+1≥0
Use the following identity: cos(x)−sin(x)=2​cos(4π​+x)1+2​cos(4π​+x)≥0
Move 1to the right side
1+2​cos(4π​+x)≥0
Subtract 1 from both sides1+2​cos(4π​+x)−1≥0−1
Simplify2​cos(4π​+x)≥−1
2​cos(4π​+x)≥−1
Divide both sides by 2​
2​cos(4π​+x)≥−1
Divide both sides by 2​2​2​cos(4π​+x)​≥2​−1​
Simplify
2​2​cos(4π​+x)​≥2​−1​
Simplify 2​2​cos(4π​+x)​:cos(4π​+x)
2​2​cos(4π​+x)​
Cancel the common factor: 2​=cos(4π​+x)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
cos(4π​+x)≥−22​​
cos(4π​+x)≥−22​​
cos(4π​+x)≥−22​​
For cos(x)≥a, if −1<a<1 then −arccos(a)+2πn≤x≤arccos(a)+2πn−arccos(−22​​)+2πn≤(4π​+x)≤arccos(−22​​)+2πn
If a≤u≤bthen a≤uandu≤b−arccos(−22​​)+2πn≤4π​+xand4π​+x≤arccos(−22​​)+2πn
−arccos(−22​​)+2πn≤4π​+x:x≥2πn−π
−arccos(−22​​)+2πn≤4π​+x
Switch sides4π​+x≥−arccos(−22​​)+2πn
Simplify −arccos(−22​​)+2πn:−43π​+2πn
−arccos(−22​​)+2πn
Use the following trivial identity:arccos(−22​​)=43π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−43π​+2πn
4π​+x≥−43π​+2πn
Move 4π​to the right side
4π​+x≥−43π​+2πn
Subtract 4π​ from both sides4π​+x−4π​≥−43π​+2πn−4π​
Simplify
4π​+x−4π​≥−43π​+2πn−4π​
Simplify 4π​+x−4π​:x
4π​+x−4π​
Add similar elements: 4π​−4π​≥0
=x
Simplify −43π​+2πn−4π​:2πn−π
−43π​+2πn−4π​
Group like terms=2πn−4π​−43π​
Combine the fractions −4π​−43π​:−π
Apply rule ca​±cb​=ca±b​=4−π−3π​
Add similar elements: −π−3π=−4π=4−4π​
Apply the fraction rule: b−a​=−ba​=−44π​
Divide the numbers: 44​=1=−π
=2πn−π
x≥2πn−π
x≥2πn−π
x≥2πn−π
4π​+x≤arccos(−22​​)+2πn:x≤2πn+2π​
4π​+x≤arccos(−22​​)+2πn
Simplify arccos(−22​​)+2πn:43π​+2πn
arccos(−22​​)+2πn
Use the following trivial identity:arccos(−22​​)=43π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=43π​+2πn
4π​+x≤43π​+2πn
Move 4π​to the right side
4π​+x≤43π​+2πn
Subtract 4π​ from both sides4π​+x−4π​≤43π​+2πn−4π​
Simplify
4π​+x−4π​≤43π​+2πn−4π​
Simplify 4π​+x−4π​:x
4π​+x−4π​
Add similar elements: 4π​−4π​≤0
=x
Simplify 43π​+2πn−4π​:2πn+2π​
43π​+2πn−4π​
Group like terms=2πn−4π​+43π​
Combine the fractions −4π​+43π​:2π​
Apply rule ca​±cb​=ca±b​=4−π+3π​
Add similar elements: −π+3π=2π=42π​
Cancel the common factor: 2=2π​
=2πn+2π​
x≤2πn+2π​
x≤2πn+2π​
x≤2πn+2π​
Combine the intervalsx≥2πn−πandx≤2πn+2π​
Merge Overlapping Intervals−π+2πn≤x≤2π​+2πn

Popular Examples

tan(x)>\sqrt[4]{5}3tan(x)<-3-1/2 (10sin(2pi*60x))<-0.523cos(t/2-pi/4)>01-2cos(x)>0[0.2pi]
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024