Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin(x)+cos(x))^2>= 3-2tan(x)+tan^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(sin(x)+cos(x))2≥3−2tan(x)+tan2(x)

Solution

πn≤x<2π​+πn
+2
Interval Notation
[πn,2π​+πn)
Decimal
πn≤x<1.57079…+πn
Solution steps
(sin(x)+cos(x))2≥3−2tan(x)+tan2(x)
Subtract −2tan(x)+tan2(x) from both sides(sin(x)+cos(x))2−(−2tan(x)+tan2(x))≥3−2tan(x)+tan2(x)−(−2tan(x)+tan2(x))
(sin(x)+cos(x))2−(−2tan(x)+tan2(x))≥3
Use the following identity: cos(x)+sin(x)=2​sin(4π​+x)(2​sin(4π​+x))2−(tan2(x)−2tan(x))≥3
Simplify (2​sin(4π​+x))2−(tan2(x)−2tan(x)):2sin2(4π​+x)−tan2(x)+2tan(x)
(2​sin(4π​+x))2−(tan2(x)−2tan(x))
(2​sin(4π​+x))2=2sin2(4π​+x)
(2​sin(4π​+x))2
Apply exponent rule: (a⋅b)n=anbn=(2​)2sin2(x+4π​)
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2sin2(4π​+x)
=2sin2(x+4π​)−(tan2(x)−2tan(x))
−(tan2(x)−2tan(x)):−tan2(x)+2tan(x)
−(tan2(x)−2tan(x))
Distribute parentheses=−(tan2(x))−(−2tan(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−tan2(x)+2tan(x)
=2sin2(4π​+x)−tan2(x)+2tan(x)
2sin2(4π​+x)−tan2(x)+2tan(x)≥3
Periodicity of 2sin2(4π​+x)−tan2(x)+2tan(x):π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periods2sin2(4π​+x),tan2(x),2tan(x)
Periodicity of 2sin2(4π​+x):π
Periodicity of sinn(x)=2Periodicityofsin(x)​,if n is even
Periodicity of sin(4π​+x):2π
Periodicity of sin(x)is 2π=2π
22π​
Simplifyπ
Periodicity of tan2(x):π
Periodicityoftann(x)=Periodicity of tan(x)
Periodicity of tan(x):π
Periodicity of tan(x)is π=π
π
Periodicity of 2tan(x):π
Periodicity of a⋅tan(bx+c)+d=∣b∣periodicityoftan(x)​Periodicity of tan(x)is π=∣1∣π​
Simplify=π
Combine periods: π,π,π
=π
Express with sin, cos
2sin2(4π​+x)−tan2(x)+2tan(x)≥3
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​2sin2(4π​+x)−(cos(x)sin(x)​)2+2⋅cos(x)sin(x)​≥3
2sin2(4π​+x)−(cos(x)sin(x)​)2+2⋅cos(x)sin(x)​≥3
Simplify 2sin2(4π​+x)−(cos(x)sin(x)​)2+2⋅cos(x)sin(x)​:cos2(x)2sin2(4π+4x​)cos2(x)−sin2(x)+2sin(x)cos(x)​
2sin2(4π​+x)−(cos(x)sin(x)​)2+2⋅cos(x)sin(x)​
sin2(4π​+x)=sin2(4π+4x​)
sin2(4π​+x)
Join 4π​+x:4π+4x​
4π​+x
Convert element to fraction: x=4x4​=4π​+4x⋅4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4π+x⋅4​
=sin2(4π+x⋅4​)
=2sin2(44x+π​)−(cos(x)sin(x)​)2+2⋅cos(x)sin(x)​
Apply exponent rule: (ba​)c=bcac​=2sin2(44x+π​)−cos2(x)sin2(x)​+2⋅cos(x)sin(x)​
Multiply 2⋅cos(x)sin(x)​:cos(x)2sin(x)​
2⋅cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅2​
=2sin2(44x+π​)−cos2(x)sin2(x)​+cos(x)2sin(x)​
Convert element to fraction: 2sin2(44x+π​)=12sin2(44x+π​)​=12sin2(4π+x⋅4​)​−cos2(x)sin2(x)​+cos(x)sin(x)⋅2​
Least Common Multiplier of 1,cos2(x),cos(x):cos2(x)
1,cos2(x),cos(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=cos2(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos2(x)
For 12sin2(4π+x⋅4​)​:multiply the denominator and numerator by cos2(x)12sin2(4π+x⋅4​)​=1⋅cos2(x)2sin2(4π+x⋅4​)cos2(x)​=cos2(x)2sin2(4π+x⋅4​)cos2(x)​
For cos(x)sin(x)⋅2​:multiply the denominator and numerator by cos(x)cos(x)sin(x)⋅2​=cos(x)cos(x)sin(x)⋅2cos(x)​=cos2(x)sin(x)⋅2cos(x)​
=cos2(x)2sin2(4π+x⋅4​)cos2(x)​−cos2(x)sin2(x)​+cos2(x)sin(x)⋅2cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)2sin2(4π+x⋅4​)cos2(x)−sin2(x)+sin(x)⋅2cos(x)​
cos2(x)2sin2(4π+4x​)cos2(x)−sin2(x)+2sin(x)cos(x)​≥3
Find the zeroes and undifined points of cos2(x)2sin2(4π+4x​)cos2(x)−sin2(x)+2sin(x)cos(x)​for 0≤x<π
To find the zeroes, set the inequality to zerocos2(x)2sin2(4π+4x​)cos2(x)−sin2(x)+2sin(x)cos(x)​=0
Find the undefined points:x=2π​
Find the zeros of the denominatorcos2(x)=0
Apply rule xn=0⇒x=0
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<πx=2π​
2π​
Identify the intervals0<x<2π​,2π​<x<π
Summarize in a table:2sin2(4π+4x​)cos2(x)−sin2(x)+2sin(x)cos(x)cos2(x)cos2(x)2sin2(4π+4x​)cos2(x)−sin2(x)+2sin(x)cos(x)​​x=0+++​0<x<2π​+++​x=2π​−0Undefined​2π​<x<π−+−​x=π+++​​
Identify the intervals that satisfy the required condition: ≥0x=0or0<x<2π​orx=π
Merge Overlapping Intervals
0≤x<2π​orx=π
The union of two intervals is the set of numbers which are in either interval
x=0or0<x<2π​
0≤x<2π​
The union of two intervals is the set of numbers which are in either interval
0≤x<2π​orx=π
0≤x<2π​orx=π
0≤x<2π​orx=π
Apply the periodicity of 2sin2(4π​+x)−tan2(x)+2tan(x)πn≤x<2π​+πn

Popular Examples

sqrt(3)cos(x)-sin(x)<= 01/(tan(x))>cot(1/x)-2cos(x)+1>02sin^4(x)-3sin^2(x)+1>0cos(x)+(sqrt(3))/2 <= 0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024