Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin^4(x)-3sin^2(x)+1>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin4(x)−3sin2(x)+1>0

Solution

2πn≤x<4π​+2πnor43π​+2πn<x<45π​+2πnor47π​+2πn<x<2π+2πn
+2
Interval Notation
[2πn,4π​+2πn)∪(43π​+2πn,45π​+2πn)∪(47π​+2πn,2π+2πn)
Decimal
2πn≤x<0.78539…+2πnor2.35619…+2πn<x<3.92699…+2πnor5.49778…+2πn<x<6.28318…+2πn
Solution steps
2sin4(x)−3sin2(x)+1>0
Let: v=sin(x)2v4−3v2+1>0
2v4−3v2+1>0:v<−1or−22​​<v<22​​orv>1
2v4−3v2+1>0
Factor 2v4−3v2+1:(2​v+1)(2​v−1)(v+1)(v−1)
2v4−3v2+1
Let u=v2=2u2−3u+1
Factor 2u2−3u+1:(2u−1)(u−1)
2u2−3u+1
Break the expression into groups
2u2−3u+1
Definition
Factors of 2:1,2
2
Divisors (Factors)
Find the Prime factors of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Add 1 1
The factors of 21,2
Negative factors of 2:−1,−2
Multiply the factors by −1 to get the negative factors−1,−2
For every two factors such that u∗v=2,check if u+v=−3
Check u=1,v=2:u∗v=2,u+v=3⇒FalseCheck u=−1,v=−2:u∗v=2,u+v=−3⇒True
u=−1,v=−2
Group into (ax2+ux)+(vx+c)(2u2−u)+(−2u+1)
=(2u2−u)+(−2u+1)
Factor out ufrom 2u2−u:u(2u−1)
2u2−u
Apply exponent rule: ab+c=abacu2=uu=2uu−u
Factor out common term u=u(2u−1)
Factor out −1from −2u+1:−(2u−1)
−2u+1
Factor out common term −1=−(2u−1)
=u(2u−1)−(2u−1)
Factor out common term 2u−1=(2u−1)(u−1)
=(2u−1)(u−1)
Substitute back u=v2=(v2−1)(2v2−1)
Factor 2v2−1:(2​v+1)(2​v−1)
2v2−1
Rewrite 2v2−1 as (2​v)2−12
2v2−1
Apply radical rule: a=(a​)22=(2​)2=(2​)2v2−1
Rewrite 1 as 12=(2​)2v2−12
Apply exponent rule: ambm=(ab)m(2​)2v2=(2​v)2=(2​v)2−12
=(2​v)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​v)2−12=(2​v+1)(2​v−1)=(2​v+1)(2​v−1)
=(2​v+1)(2​v−1)(v2−1)
Factor v2−1:(v+1)(v−1)
v2−1
Rewrite 1 as 12=v2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)v2−12=(v+1)(v−1)=(v+1)(v−1)
=(2​v+1)(2​v−1)(v+1)(v−1)
(2​v+1)(2​v−1)(v+1)(v−1)>0
Identify the intervals
Find the signs of the factors of (2​v+1)(2​v−1)(v+1)(v−1)
Find the signs of 2​v+1
2​v+1=0:v=−22​​
2​v+1=0
Move 1to the right side
2​v+1=0
Subtract 1 from both sides2​v+1−1=0−1
Simplify2​v=−1
2​v=−1
Divide both sides by 2​
2​v=−1
Divide both sides by 2​2​2​v​=2​−1​
Simplify
2​2​v​=2​−1​
Simplify 2​2​v​:v
2​2​v​
Cancel the common factor: 2​=v
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
v=−22​​
v=−22​​
v=−22​​
2​v+1<0:v<−22​​
2​v+1<0
Move 1to the right side
2​v+1<0
Subtract 1 from both sides2​v+1−1<0−1
Simplify2​v<−1
2​v<−1
Divide both sides by 2​
2​v<−1
Divide both sides by 2​2​2​v​<2​−1​
Simplify
2​2​v​<2​−1​
Simplify 2​2​v​:v
2​2​v​
Cancel the common factor: 2​=v
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
v<−22​​
v<−22​​
v<−22​​
2​v+1>0:v>−22​​
2​v+1>0
Move 1to the right side
2​v+1>0
Subtract 1 from both sides2​v+1−1>0−1
Simplify2​v>−1
2​v>−1
Divide both sides by 2​
2​v>−1
Divide both sides by 2​2​2​v​>2​−1​
Simplify
2​2​v​>2​−1​
Simplify 2​2​v​:v
2​2​v​
Cancel the common factor: 2​=v
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
v>−22​​
v>−22​​
v>−22​​
Find the signs of 2​v−1
2​v−1=0:v=22​​
2​v−1=0
Move 1to the right side
2​v−1=0
Add 1 to both sides2​v−1+1=0+1
Simplify2​v=1
2​v=1
Divide both sides by 2​
2​v=1
Divide both sides by 2​2​2​v​=2​1​
Simplify
2​2​v​=2​1​
Simplify 2​2​v​:v
2​2​v​
Cancel the common factor: 2​=v
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
v=22​​
v=22​​
v=22​​
2​v−1<0:v<22​​
2​v−1<0
Move 1to the right side
2​v−1<0
Add 1 to both sides2​v−1+1<0+1
Simplify2​v<1
2​v<1
Divide both sides by 2​
2​v<1
Divide both sides by 2​2​2​v​<2​1​
Simplify
2​2​v​<2​1​
Simplify 2​2​v​:v
2​2​v​
Cancel the common factor: 2​=v
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
v<22​​
v<22​​
v<22​​
2​v−1>0:v>22​​
2​v−1>0
Move 1to the right side
2​v−1>0
Add 1 to both sides2​v−1+1>0+1
Simplify2​v>1
2​v>1
Divide both sides by 2​
2​v>1
Divide both sides by 2​2​2​v​>2​1​
Simplify
2​2​v​>2​1​
Simplify 2​2​v​:v
2​2​v​
Cancel the common factor: 2​=v
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
v>22​​
v>22​​
v>22​​
Find the signs of v+1
v+1=0:v=−1
v+1=0
Move 1to the right side
v+1=0
Subtract 1 from both sidesv+1−1=0−1
Simplifyv=−1
v=−1
v+1<0:v<−1
v+1<0
Move 1to the right side
v+1<0
Subtract 1 from both sidesv+1−1<0−1
Simplifyv<−1
v<−1
v+1>0:v>−1
v+1>0
Move 1to the right side
v+1>0
Subtract 1 from both sidesv+1−1>0−1
Simplifyv>−1
v>−1
Find the signs of v−1
v−1=0:v=1
v−1=0
Move 1to the right side
v−1=0
Add 1 to both sidesv−1+1=0+1
Simplifyv=1
v=1
v−1<0:v<1
v−1<0
Move 1to the right side
v−1<0
Add 1 to both sidesv−1+1<0+1
Simplifyv<1
v<1
v−1>0:v>1
v−1>0
Move 1to the right side
v−1>0
Add 1 to both sidesv−1+1>0+1
Simplifyv>1
v>1
Summarize in a table:2​v+12​v−1v+1v−1(2​v+1)(2​v−1)(v+1)(v−1)​v<−1−−−−+​v=−1−−0−0​−1<v<−22​​−−+−−​v=−22​​0−+−0​−22​​<v<22​​+−+−+​v=22​​+0+−0​22​​<v<1+++−−​v=1+++00​v>1+++++​​
Identify the intervals that satisfy the required condition: >0v<−1or−22​​<v<22​​orv>1
v<−1or−22​​<v<22​​orv>1
v<−1or−22​​<v<22​​orv>1
Substitute back v=sin(x)sin(x)<−1or−22​​<sin(x)<22​​orsin(x)>1
sin(x)<−1:False for all x∈R
sin(x)<−1
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)<−1and−1≤sin(x)≤1:False
Let y=sin(x)
Combine the intervalsy<−1and−1≤y≤1
Merge Overlapping Intervals
y<−1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y<−1and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
−22​​<sin(x)<22​​:2πn≤x<4π​+2πnor43π​+2πn<x<45π​+2πnor47π​+2πn<x<2π+2πn
−22​​<sin(x)<22​​
If a<u<bthen a<uandu<b−22​​<sin(x)andsin(x)<22​​
−22​​<sin(x):−4π​+2πn<x<45π​+2πn
−22​​<sin(x)
Switch sidessin(x)>−22​​
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(−22​​)+2πn<x<π−arcsin(−22​​)+2πn
Simplify arcsin(−22​​):−4π​
arcsin(−22​​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−22​​)=−arcsin(22​​)=−arcsin(22​​)
Use the following trivial identity:arcsin(22​​)=4π​
arcsin(22​​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=4π​
=−4π​
Simplify π−arcsin(−22​​):45π​
π−arcsin(−22​​)
arcsin(−22​​)=−4π​
arcsin(−22​​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−22​​)=−arcsin(22​​)=−arcsin(22​​)
Use the following trivial identity:arcsin(22​​)=4π​
arcsin(22​​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=4π​
=−4π​
=π−(−4π​)
Simplify
π−(−4π​)
Apply rule −(−a)=a=π+4π​
Convert element to fraction: π=4π4​=4π4​+4π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4π4+π​
Add similar elements: 4π+π=5π=45π​
=45π​
−4π​+2πn<x<45π​+2πn
sin(x)<22​​:−45π​+2πn<x<4π​+2πn
sin(x)<22​​
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(22​​)+2πn<x<arcsin(22​​)+2πn
Simplify −π−arcsin(22​​):−45π​
−π−arcsin(22​​)
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−4π​
Simplify
−π−4π​
Convert element to fraction: π=4π4​=−4π4​−4π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−π4−π​
Add similar elements: −4π−π=−5π=4−5π​
Apply the fraction rule: b−a​=−ba​=−45π​
=−45π​
Simplify arcsin(22​​):4π​
arcsin(22​​)
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=4π​
−45π​+2πn<x<4π​+2πn
Combine the intervals−4π​+2πn<x<45π​+2πnand−45π​+2πn<x<4π​+2πn
Merge Overlapping Intervals2πn≤x<4π​+2πnor43π​+2πn<x<45π​+2πnor47π​+2πn<x<2π+2πn
sin(x)>1:False for all x∈R
sin(x)>1
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)>1and−1≤sin(x)≤1:False
Let y=sin(x)
Combine the intervalsy>1and−1≤y≤1
Merge Overlapping Intervals
y>1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y>1and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
Combine the intervalsFalseforallx∈Ror(2πn≤x<4π​+2πnor43π​+2πn<x<45π​+2πnor47π​+2πn<x<2π+2πn)orFalseforallx∈R
Merge Overlapping Intervals2πn≤x<4π​+2πnor43π​+2πn<x<45π​+2πnor47π​+2πn<x<2π+2πn

Popular Examples

cos(x)+(sqrt(3))/2 <= 0(sin(x)+cos(x))>= 1/2tan(x)<= sqrt(3)50sin(-pi/2 x-pi/2)>= 15solvefor x,sin(x)cos(2x)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024