Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

50sin(-pi/2 x-pi/2)>= 15

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

50sin(−2π​x−2π​)≥15

Solution

π−3π+2arcsin(103​)​+4n≤x≤π−2arcsin(103​)−π​+4n
+2
Interval Notation
[π−3π+2arcsin(103​)​+4n,π−2arcsin(103​)−π​+4n]
Decimal
−2.80602…+4n≤x≤−1.19397…+4n
Solution steps
50sin(−2π​x−2π​)≥15
Divide both sides by 50
50sin(−2π​x−2π​)≥15
Divide both sides by 505050sin(−2π​x−2π​)​≥5015​
Simplifysin(−2π​x−2π​)≥103​
sin(−2π​x−2π​)≥103​
Factor out −1 from −2π​x−2π​:−(2π​x+2π​)sin(−(2π​x+2π​))≥103​
Use the following identity: sin(−x)=−sin(x)−sin(2π​+x2π​)≥103​
Multiply both sides by −1
−sin(2π​+x2π​)≥103​
Multiply both sides by -1 (reverse the inequality)(−sin(2π​+x2π​))(−1)≤103(−1)​
Simplifysin(2π​+x2π​)≤−103​
sin(2π​+x2π​)≤−103​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(−103​)+2πn≤(2π​+x2π​)≤arcsin(−103​)+2πn
If a≤u≤bthen a≤uandu≤b−π−arcsin(−103​)+2πn≤2π​+x2π​and2π​+x2π​≤arcsin(−103​)+2πn
−π−arcsin(−103​)+2πn≤2π​+x2π​:x≥π−3π+2arcsin(103​)​+4n
−π−arcsin(−103​)+2πn≤2π​+x2π​
Switch sides2π​+x2π​≥−π−arcsin(−103​)+2πn
Simplify −π−arcsin(−103​)+2πn:−π+arcsin(103​)+2πn
−π−arcsin(−103​)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−103​)=−arcsin(103​)=−π−(−arcsin(103​))+2πn
Apply rule −(−a)=a=−π+arcsin(103​)+2πn
2π​+x2π​≥−π+arcsin(103​)+2πn
Move 2π​to the right side
2π​+x2π​≥−π+arcsin(103​)+2πn
Subtract 2π​ from both sides2π​+x2π​−2π​≥−π+arcsin(103​)+2πn−2π​
Simplifyx2π​≥−π+arcsin(103​)+2πn−2π​
x2π​≥−π+arcsin(103​)+2πn−2π​
Multiply both sides by 2
x2π​≥−π+arcsin(103​)+2πn−2π​
Multiply both sides by 22x2π​≥−2π+2arcsin(103​)+2⋅2πn−2⋅2π​
Simplify
2x2π​≥−2π+2arcsin(103​)+2⋅2πn−2⋅2π​
Simplify 2x2π​:πx
2x2π​
Multiply fractions: a⋅cb​=ca⋅b​=22π​x
Cancel the common factor: 2=xπ
Simplify −2π+2arcsin(103​)+2⋅2πn−2⋅2π​:−3π+4πn+2arcsin(103​)
−2π+2arcsin(103​)+2⋅2πn−2⋅2π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
=−2π+2arcsin(103​)+4πn−π
Group like terms=−2π−π+4πn+2arcsin(103​)
Add similar elements: −2π−π=−3π=−3π+4πn+2arcsin(103​)
πx≥−3π+4πn+2arcsin(103​)
πx≥−3π+4πn+2arcsin(103​)
πx≥−3π+4πn+2arcsin(103​)
Divide both sides by π
πx≥−3π+4πn+2arcsin(103​)
Divide both sides by πππx​≥−π3π​+π4πn​+π2arcsin(103​)​
Simplify
ππx​≥−π3π​+π4πn​+π2arcsin(103​)​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify −π3π​+π4πn​+π2arcsin(103​)​:−3+4n+π2arcsin(103​)​
−π3π​+π4πn​+π2arcsin(103​)​
Cancel π3π​:3
π3π​
Cancel the common factor: π=3
=−3+π4πn​+π2arcsin(103​)​
Cancel π4πn​:4n
π4πn​
Cancel the common factor: π=4n
=−3+4n+π2arcsin(103​)​
x≥−3+4n+π2arcsin(103​)​
x≥−3+4n+π2arcsin(103​)​
Simplify −3+π2arcsin(103​)​:π−3π+2arcsin(103​)​
−3+π2arcsin(103​)​
Convert element to fraction: 3=π3π​=−π3π​+π2arcsin(103​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=π−3π+2arcsin(103​)​
x≥π−3π+2arcsin(103​)​+4n
x≥π−3π+2arcsin(103​)​+4n
2π​+x2π​≤arcsin(−103​)+2πn:x≤π−2arcsin(103​)−π​+4n
2π​+x2π​≤arcsin(−103​)+2πn
Simplify arcsin(−103​)+2πn:−arcsin(103​)+2πn
arcsin(−103​)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−103​)=−arcsin(103​)=−arcsin(103​)+2πn
2π​+x2π​≤−arcsin(103​)+2πn
Move 2π​to the right side
2π​+x2π​≤−arcsin(103​)+2πn
Subtract 2π​ from both sides2π​+x2π​−2π​≤−arcsin(103​)+2πn−2π​
Simplifyx2π​≤−arcsin(103​)+2πn−2π​
x2π​≤−arcsin(103​)+2πn−2π​
Multiply both sides by 2
x2π​≤−arcsin(103​)+2πn−2π​
Multiply both sides by 22x2π​≤−2arcsin(103​)+2⋅2πn−2⋅2π​
Simplify
2x2π​≤−2arcsin(103​)+2⋅2πn−2⋅2π​
Simplify 2x2π​:πx
2x2π​
Multiply fractions: a⋅cb​=ca⋅b​=22π​x
Cancel the common factor: 2=xπ
Simplify −2arcsin(103​)+2⋅2πn−2⋅2π​:−2arcsin(103​)+4πn−π
−2arcsin(103​)+2⋅2πn−2⋅2π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
=−2arcsin(103​)+4πn−π
πx≤−2arcsin(103​)+4πn−π
πx≤−2arcsin(103​)+4πn−π
πx≤−2arcsin(103​)+4πn−π
Divide both sides by π
πx≤−2arcsin(103​)+4πn−π
Divide both sides by πππx​≤−π2arcsin(103​)​+π4πn​−ππ​
Simplify
ππx​≤−π2arcsin(103​)​+π4πn​−ππ​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify −π2arcsin(103​)​+π4πn​−ππ​:−π2arcsin(103​)​+4n−1
−π2arcsin(103​)​+π4πn​−ππ​
Apply rule aa​=1ππ​=1=−π2arcsin(103​)​+π4πn​−1
Cancel π4πn​:4n
π4πn​
Cancel the common factor: π=4n
=−π2arcsin(103​)​+4n−1
x≤−π2arcsin(103​)​+4n−1
x≤−π2arcsin(103​)​+4n−1
Simplify −π2arcsin(103​)​−1:π−2arcsin(103​)−π​
−π2arcsin(103​)​−1
Convert element to fraction: 1=π1π​=−π2arcsin(103​)​−π1π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=π−2arcsin(103​)−1π​
Multiply: 1π=π=π−2arcsin(103​)−π​
x≤π−2arcsin(103​)−π​+4n
x≤π−2arcsin(103​)−π​+4n
Combine the intervalsx≥π−3π+2arcsin(103​)​+4nandx≤π−2arcsin(103​)−π​+4n
Merge Overlapping Intervalsπ−3π+2arcsin(103​)​+4n≤x≤π−2arcsin(103​)−π​+4n

Popular Examples

solvefor x,sin(x)cos(2x)>0cos(2x)>= 1cos(x)-sin(x)>=-1sin(x)-sqrt(3)cos(x)>0sin^2(x)>1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024