Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos^2(2x)<= 0.5

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos2(2x)≤0.5

Solution

6π​+πn≤x≤3π​+πnor32π​+πn≤x≤65π​+πn
+2
Interval Notation
[6π​+πn,3π​+πn]∪[32π​+πn,65π​+πn]
Decimal
0.52359…+πn≤x≤1.04719…+πnor2.09439…+πn≤x≤2.61799…+πn
Solution steps
2cos2(2x)≤0.5
Divide both sides by 2
2cos2(2x)≤0.5
Divide both sides by 222cos2(2x)​≤20.5​
Simplifycos2(2x)≤0.25
cos2(2x)≤0.25
For un≤a, if nis even then
−0.25​≤cos(2x)≤0.25​
0.25​=0.5
0.25​
0.25​=0.5=0.5
−0.5≤cos(2x)≤0.5
If a≤u≤bthen a≤uandu≤b−0.5≤cos(2x)andcos(2x)≤0.5
−0.5≤cos(2x):−3π​+πn≤x≤3π​+πn
−0.5≤cos(2x)
Switch sidescos(2x)≥−0.5
For cos(x)≥a, if −1<a<1 then −arccos(a)+2πn≤x≤arccos(a)+2πn−arccos(−0.5)+2πn≤2x≤arccos(−0.5)+2πn
If a≤u≤bthen a≤uandu≤b−arccos(−0.5)+2πn≤2xand2x≤arccos(−0.5)+2πn
−arccos(−0.5)+2πn≤2x:x≥−3π​+πn
−arccos(−0.5)+2πn≤2x
Switch sides2x≥−arccos(−0.5)+2πn
Simplify −arccos(−0.5)+2πn:−32π​+2πn
−arccos(−0.5)+2πn
arccos(−0.5)=32π​
arccos(−0.5)
=arccos(−21​)
Use the following trivial identity:arccos(−21​)=32π​
arccos(−21​)
x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​
=32π​
=32π​
=−32π​+2πn
2x≥−32π​+2πn
Divide both sides by 2
2x≥−32π​+2πn
Divide both sides by 222x​≥−232π​​+22πn​
Simplify
22x​≥−232π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify −232π​​+22πn​:−3π​+πn
−232π​​+22πn​
232π​​=3π​
232π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅22π​
Multiply the numbers: 3⋅2=6=62π​
Cancel the common factor: 2=3π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=−3π​+πn
x≥−3π​+πn
x≥−3π​+πn
x≥−3π​+πn
2x≤arccos(−0.5)+2πn:x≤3π​+πn
2x≤arccos(−0.5)+2πn
Simplify arccos(−0.5)+2πn:32π​+2πn
arccos(−0.5)+2πn
arccos(−0.5)=32π​
arccos(−0.5)
=arccos(−21​)
Use the following trivial identity:arccos(−21​)=32π​
arccos(−21​)
x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​
=32π​
=32π​
=32π​+2πn
2x≤32π​+2πn
Divide both sides by 2
2x≤32π​+2πn
Divide both sides by 222x​≤232π​​+22πn​
Simplify
22x​≤232π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 232π​​+22πn​:3π​+πn
232π​​+22πn​
232π​​=3π​
232π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅22π​
Multiply the numbers: 3⋅2=6=62π​
Cancel the common factor: 2=3π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=3π​+πn
x≤3π​+πn
x≤3π​+πn
x≤3π​+πn
Combine the intervalsx≥−3π​+πnandx≤3π​+πn
Merge Overlapping Intervals−3π​+πn≤x≤3π​+πn
cos(2x)≤0.5:6π​+πn≤x≤65π​+πn
cos(2x)≤0.5
For cos(x)≤a, if −1<a<1 then arccos(a)+2πn≤x≤2π−arccos(a)+2πnarccos(0.5)+2πn≤2x≤2π−arccos(0.5)+2πn
If a≤u≤bthen a≤uandu≤barccos(0.5)+2πn≤2xand2x≤2π−arccos(0.5)+2πn
arccos(0.5)+2πn≤2x:x≥6π​+πn
arccos(0.5)+2πn≤2x
Switch sides2x≥arccos(0.5)+2πn
Simplify arccos(0.5)+2πn:3π​+2πn
arccos(0.5)+2πn
arccos(0.5)=3π​
arccos(0.5)
=arccos(21​)
Use the following trivial identity:arccos(21​)=3π​
arccos(21​)
x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​
=3π​
=3π​
=3π​+2πn
2x≥3π​+2πn
Divide both sides by 2
2x≥3π​+2πn
Divide both sides by 222x​≥23π​​+22πn​
Simplify
22x​≥23π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 23π​​+22πn​:6π​+πn
23π​​+22πn​
23π​​=6π​
23π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2π​
Multiply the numbers: 3⋅2=6=6π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=6π​+πn
x≥6π​+πn
x≥6π​+πn
x≥6π​+πn
2x≤2π−arccos(0.5)+2πn:x≤65π​+πn
2x≤2π−arccos(0.5)+2πn
Simplify 2π−arccos(0.5)+2πn:2π−3π​+2πn
2π−arccos(0.5)+2πn
arccos(0.5)=3π​
arccos(0.5)
=arccos(21​)
Use the following trivial identity:arccos(21​)=3π​
arccos(21​)
x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​
=3π​
=3π​
=2π−3π​+2πn
2x≤2π−3π​+2πn
Divide both sides by 2
2x≤2π−3π​+2πn
Divide both sides by 222x​≤22π​−23π​​+22πn​
Simplify
22x​≤22π​−23π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22π​−23π​​+22πn​:π−6π​+πn
22π​−23π​​+22πn​
22π​=π
22π​
Divide the numbers: 22​=1=π
23π​​=6π​
23π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2π​
Multiply the numbers: 3⋅2=6=6π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=π−6π​+πn
x≤π−6π​+πn
x≤π−6π​+πn
Simplify π−6π​:65π​
π−6π​
Convert element to fraction: π=6π6​=6π6​−6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π6−π​
Add similar elements: 6π−π=5π=65π​
x≤65π​+πn
x≤65π​+πn
Combine the intervalsx≥6π​+πnandx≤65π​+πn
Merge Overlapping Intervals6π​+πn≤x≤65π​+πn
Combine the intervals−3π​+πn≤x≤3π​+πnand6π​+πn≤x≤65π​+πn
Merge Overlapping Intervals6π​+πn≤x≤3π​+πnor32π​+πn≤x≤65π​+πn

Popular Examples

sin(2x)<0cos(x)(cos(x)+2)<= 0(sin(x))/(cos(x))>= 1cos^2(x)-sin^2(x)>= 02cos^2(x)+3sin(x)-3>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024