Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

13<2.5cos(((2pi)/(365))(x+9))+12

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

13<2.5cos((3652π​)(x+9))+12

Solution

2π−365arccos(52​)−18π​+365n<x<2π365arccos(52​)−18π​+365n
+2
Interval Notation
(2π−365arccos(52​)−18π​+365n,2π365arccos(52​)−18π​+365n)
Decimal
−76.34434…+365n<x<58.34434…+365n
Solution steps
13<2.5cos(3652π​(x+9))+12
Switch sides2.5cos(3652π​(x+9))+12>13
Multiply both sides by 10
2.5cos(3652π​(x+9))+12>13
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere is one digit to the right of the decimal point, therefore multiply by 102.5cos(3652π​(x+9))⋅10+12⋅10>13⋅10
Refine25cos(3652π​(x+9))+120>130
25cos(3652π​(x+9))+120>130
Move 120to the right side
25cos(3652π​(x+9))+120>130
Subtract 120 from both sides25cos(3652π​(x+9))+120−120>130−120
Simplify25cos(3652π​(x+9))>10
25cos(3652π​(x+9))>10
Divide both sides by 25
25cos(3652π​(x+9))>10
Divide both sides by 252525cos(3652π​(x+9))​>2510​
Simplifycos(3652π​(x+9))>52​
cos(3652π​(x+9))>52​
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(52​)+2πn<3652π​(x+9)<arccos(52​)+2πn
If a<u<bthen a<uandu<b−arccos(52​)+2πn<3652π​(x+9)and3652π​(x+9)<arccos(52​)+2πn
−arccos(52​)+2πn<3652π​(x+9):x>2π−365arccos(52​)−18π​+365n
−arccos(52​)+2πn<3652π​(x+9)
Switch sides3652π​(x+9)>−arccos(52​)+2πn
Multiply both sides by 365
3652π​(x+9)>−arccos(52​)+2πn
Multiply both sides by 365365⋅3652π​(x+9)>−365arccos(52​)+365⋅2πn
Simplify
365⋅3652π​(x+9)>−365arccos(52​)+365⋅2πn
Simplify 365⋅3652π​(x+9):2π(x+9)
365⋅3652π​(x+9)
Multiply fractions: a⋅cb​=ca⋅b​=3652⋅365π​(x+9)
Cancel the common factor: 365=(x+9)⋅2π
Simplify −365arccos(52​)+365⋅2πn:−365arccos(52​)+730πn
−365arccos(52​)+365⋅2πn
Multiply the numbers: 365⋅2=730=−365arccos(52​)+730πn
2π(x+9)>−365arccos(52​)+730πn
2π(x+9)>−365arccos(52​)+730πn
2π(x+9)>−365arccos(52​)+730πn
Divide both sides by 2π
2π(x+9)>−365arccos(52​)+730πn
Divide both sides by 2π2π2π(x+9)​>−2π365arccos(52​)​+2π730πn​
Simplify
2π2π(x+9)​>−2π365arccos(52​)​+2π730πn​
Simplify 2π2π(x+9)​:x+9
2π2π(x+9)​
Divide the numbers: 22​=1=ππ(x+9)​
Cancel the common factor: π=x+9
Simplify −2π365arccos(52​)​+2π730πn​:−2π365arccos(52​)​+365n
−2π365arccos(52​)​+2π730πn​
Cancel 2π730πn​:365n
2π730πn​
Cancel 2π730πn​:365n
2π730πn​
Divide the numbers: 2730​=365=π365πn​
Cancel the common factor: π=365n
=365n
=−2π365arccos(52​)​+365n
x+9>−2π365arccos(52​)​+365n
x+9>−2π365arccos(52​)​+365n
x+9>−2π365arccos(52​)​+365n
Move 9to the right side
x+9>−2π365arccos(52​)​+365n
Subtract 9 from both sidesx+9−9>−2π365arccos(52​)​+365n−9
Simplifyx>−2π365arccos(52​)​+365n−9
x>−2π365arccos(52​)​+365n−9
Simplify −2π365arccos(52​)​−9:2π−365arccos(52​)−18π​
−2π365arccos(52​)​−9
Convert element to fraction: 9=2π9⋅2π​=−2π365arccos(52​)​−2π9⋅2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π−365arccos(52​)−9⋅2π​
Multiply the numbers: 9⋅2=18=2π−365arccos(52​)−18π​
x>2π−365arccos(52​)−18π​+365n
3652π​(x+9)<arccos(52​)+2πn:x<2π365arccos(52​)−18π​+365n
3652π​(x+9)<arccos(52​)+2πn
Multiply both sides by 365
3652π​(x+9)<arccos(52​)+2πn
Multiply both sides by 365365⋅3652π​(x+9)<365arccos(52​)+365⋅2πn
Simplify
365⋅3652π​(x+9)<365arccos(52​)+365⋅2πn
Simplify 365⋅3652π​(x+9):2π(x+9)
365⋅3652π​(x+9)
Multiply fractions: a⋅cb​=ca⋅b​=3652⋅365π​(x+9)
Cancel the common factor: 365=(x+9)⋅2π
Simplify 365arccos(52​)+365⋅2πn:365arccos(52​)+730πn
365arccos(52​)+365⋅2πn
Multiply the numbers: 365⋅2=730=365arccos(52​)+730πn
2π(x+9)<365arccos(52​)+730πn
2π(x+9)<365arccos(52​)+730πn
2π(x+9)<365arccos(52​)+730πn
Divide both sides by 2π
2π(x+9)<365arccos(52​)+730πn
Divide both sides by 2π2π2π(x+9)​<2π365arccos(52​)​+2π730πn​
Simplify
2π2π(x+9)​<2π365arccos(52​)​+2π730πn​
Simplify 2π2π(x+9)​:x+9
2π2π(x+9)​
Divide the numbers: 22​=1=ππ(x+9)​
Cancel the common factor: π=x+9
Simplify 2π365arccos(52​)​+2π730πn​:2π365arccos(52​)​+365n
2π365arccos(52​)​+2π730πn​
Cancel 2π730πn​:365n
2π730πn​
Cancel 2π730πn​:365n
2π730πn​
Divide the numbers: 2730​=365=π365πn​
Cancel the common factor: π=365n
=365n
=2π365arccos(52​)​+365n
x+9<2π365arccos(52​)​+365n
x+9<2π365arccos(52​)​+365n
x+9<2π365arccos(52​)​+365n
Move 9to the right side
x+9<2π365arccos(52​)​+365n
Subtract 9 from both sidesx+9−9<2π365arccos(52​)​+365n−9
Simplifyx<2π365arccos(52​)​+365n−9
x<2π365arccos(52​)​+365n−9
Simplify 2π365arccos(52​)​−9:2π365arccos(52​)−18π​
2π365arccos(52​)​−9
Convert element to fraction: 9=2π9⋅2π​=2π365arccos(52​)​−2π9⋅2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π365arccos(52​)−9⋅2π​
Multiply the numbers: 9⋅2=18=2π365arccos(52​)−18π​
x<2π365arccos(52​)−18π​+365n
Combine the intervalsx>2π−365arccos(52​)−18π​+365nandx<2π365arccos(52​)−18π​+365n
Merge Overlapping Intervals2π−365arccos(52​)−18π​+365n<x<2π365arccos(52​)−18π​+365n

Popular Examples

sin^4(x)-cos^4(x)<= 0cos(x)-sin(x)<04(cos(x))^2>1sec(-5)sin(θ)>0cos^2(x)>= 1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024